SFIX:Scalable Financial-oriented Interpretable eXplanation

IF 7.6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Abdullah Emir Cil , Kazim Yildiz
{"title":"SFIX:Scalable Financial-oriented Interpretable eXplanation","authors":"Abdullah Emir Cil ,&nbsp;Kazim Yildiz","doi":"10.1016/j.iot.2025.101713","DOIUrl":null,"url":null,"abstract":"<div><div>The use of artificial intelligence in finance undoubtedly has a significant contribution in providing financial services to customers in a more efficient and secure manner. However, black box artificial intelligence algorithms can pose challenges in ensuring the safe functioning of financial services and monitoring desired outcomes. In this study, we have tried to design an explainable artificial intelligence method called Scalable Financial-oriented Interpretable eXplanation (SFIX) specific to the finance sector. While designing the SFIX method, time-based approaches such as fraud detection, credit scoring, customer profiling and other applications used in finance were taken into account. The accuracy and consistency of the dataset are also included in the calculations to support explainability. Finally, a simplified version of the SFIX method is also designed for quick testing of the model in case of problems in finding the real dataset.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"33 ","pages":"Article 101713"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525002276","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The use of artificial intelligence in finance undoubtedly has a significant contribution in providing financial services to customers in a more efficient and secure manner. However, black box artificial intelligence algorithms can pose challenges in ensuring the safe functioning of financial services and monitoring desired outcomes. In this study, we have tried to design an explainable artificial intelligence method called Scalable Financial-oriented Interpretable eXplanation (SFIX) specific to the finance sector. While designing the SFIX method, time-based approaches such as fraud detection, credit scoring, customer profiling and other applications used in finance were taken into account. The accuracy and consistency of the dataset are also included in the calculations to support explainability. Finally, a simplified version of the SFIX method is also designed for quick testing of the model in case of problems in finding the real dataset.
SFIX:可扩展的财务导向的可解释的解释
人工智能在金融领域的应用无疑在以更高效、更安全的方式向客户提供金融服务方面做出了重大贡献。然而,黑箱人工智能算法在确保金融服务的安全运行和监控预期结果方面可能会带来挑战。在这项研究中,我们试图设计一种可解释的人工智能方法,称为可扩展金融导向的可解释解释(SFIX),专门针对金融部门。在设计SFIX方法时,考虑了基于时间的方法,如欺诈检测、信用评分、客户分析和金融中使用的其他应用。数据集的准确性和一致性也包括在计算中,以支持可解释性。最后,还设计了简化版的SFIX方法,以便在寻找真实数据集出现问题时对模型进行快速测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信