{"title":"A correlation-robust shrinkage estimator: Oracle inequality and an application on out-of-sample factor selection","authors":"Chuanping Sun","doi":"10.1016/j.econlet.2025.112480","DOIUrl":null,"url":null,"abstract":"<div><div>Shrinkage methods are widely used in big data to achieve sparse variable selection and reduce overfitting. However, these methods, such as LASSO (Tibshirani, 1996), often struggle when faced with highly correlated predictors. In this paper, we examine a recently developed machine learning estimator that is robust to highly correlated variables, providing superior out-of-sample performance compared to traditional shrinkage techniques. We establish the asymptotic properties of this estimator under general conditions, including i.i.d. sub-Gaussianity. Empirically, we demonstrate the practical benefits of this approach in selecting factors to construct hedged portfolios, achieving significantly higher Sharpe ratios compared to benchmarks such as LASSO, Ridge, and Elastic Net in an out-of-sample context.</div></div>","PeriodicalId":11468,"journal":{"name":"Economics Letters","volume":"255 ","pages":"Article 112480"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics Letters","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165176525003179","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Shrinkage methods are widely used in big data to achieve sparse variable selection and reduce overfitting. However, these methods, such as LASSO (Tibshirani, 1996), often struggle when faced with highly correlated predictors. In this paper, we examine a recently developed machine learning estimator that is robust to highly correlated variables, providing superior out-of-sample performance compared to traditional shrinkage techniques. We establish the asymptotic properties of this estimator under general conditions, including i.i.d. sub-Gaussianity. Empirically, we demonstrate the practical benefits of this approach in selecting factors to construct hedged portfolios, achieving significantly higher Sharpe ratios compared to benchmarks such as LASSO, Ridge, and Elastic Net in an out-of-sample context.
期刊介绍:
Many economists today are concerned by the proliferation of journals and the concomitant labyrinth of research to be conquered in order to reach the specific information they require. To combat this tendency, Economics Letters has been conceived and designed outside the realm of the traditional economics journal. As a Letters Journal, it consists of concise communications (letters) that provide a means of rapid and efficient dissemination of new results, models and methods in all fields of economic research.