Mariangeles Salas, Simran Singh, Raman Rao, Raghul Thiyagarajan, Ashutosh Mittal, John Yarbrough, Anand Singh, Lucian Lucia, Lokendra Pal
{"title":"Hyperspectral imaging for real-time waste materials characterization and recovery using endmember extraction and abundance detection","authors":"Mariangeles Salas, Simran Singh, Raman Rao, Raghul Thiyagarajan, Ashutosh Mittal, John Yarbrough, Anand Singh, Lucian Lucia, Lokendra Pal","doi":"10.1016/j.matt.2025.102365","DOIUrl":null,"url":null,"abstract":"Hyperspectral imaging, combined with advanced spectral unmixing techniques and artificial intelligence, offers a powerful solution for improving material identification and classification. This study evaluates the effectiveness of the pixel purity index and the sequential maximum angle convex cone algorithms in extracting and validating spectral signatures from pure samples of paper components (cellulose and lignin) and plastic (polypropylene). Principal-component analysis showed that both algorithms captured nearly all relevant variance for the tested materials. Spectral signatures were compared using the spectral angle mapper, revealing high similarity in the short-wave infrared region and greater variability in the visible near-infrared range. The methodology was then applied to a disposable coffee cup to detect and quantify mixed materials, accurately estimating material abundance and object area with less than 1% error. This approach enhances material classification, supporting product verification, quality control, and automated sorting for sustainable waste management and resource recovery.","PeriodicalId":388,"journal":{"name":"Matter","volume":"98 1","pages":""},"PeriodicalIF":17.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102365","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperspectral imaging, combined with advanced spectral unmixing techniques and artificial intelligence, offers a powerful solution for improving material identification and classification. This study evaluates the effectiveness of the pixel purity index and the sequential maximum angle convex cone algorithms in extracting and validating spectral signatures from pure samples of paper components (cellulose and lignin) and plastic (polypropylene). Principal-component analysis showed that both algorithms captured nearly all relevant variance for the tested materials. Spectral signatures were compared using the spectral angle mapper, revealing high similarity in the short-wave infrared region and greater variability in the visible near-infrared range. The methodology was then applied to a disposable coffee cup to detect and quantify mixed materials, accurately estimating material abundance and object area with less than 1% error. This approach enhances material classification, supporting product verification, quality control, and automated sorting for sustainable waste management and resource recovery.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.