{"title":"Design principle for 3D thermoelectric materials in power generators","authors":"Seong Eun Yang, Jungsoo Lee, Haiyang Li, Byungki Ryu, Jae Sung Son","doi":"10.1039/d5ee03225c","DOIUrl":null,"url":null,"abstract":"Thermoelectric power generation, which converts waste heat into electricity, represents a promising approach toward sustainable energy harvesting. While geometric regulation of thermoelectric materials has shown significant potential for enhancing device performance, existing theoretical and computational approaches typically rely on simplified, case-specific designs under constrained conditions. This limitation primarily stems from theoretical challenges in comprehensively understanding thermoelectric transport in three-dimensional (3D) materials under varied thermal environments. Here, we develop an analytical theoretical framework to rigorously examines power generation in 3D thermoelectric materials across diverse thermal boundary conditions. Based on this framework, we propose a universal geometric design principle to optimize 3D materials for maximum power generation and introduce a universal figure of merit that comprehensively integrates material properties, geometry, and boundary conditions. Experimental validation using optimized 3D-printed (Bi, Sb)2Te3 legs demonstrates significant enhancements in performance. This study establishes a robust theoretical foundation and practical design strategy, advancing thermoelectric energy harvesting beyond traditional material-property-based optimizations.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"11 1","pages":""},"PeriodicalIF":30.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ee03225c","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermoelectric power generation, which converts waste heat into electricity, represents a promising approach toward sustainable energy harvesting. While geometric regulation of thermoelectric materials has shown significant potential for enhancing device performance, existing theoretical and computational approaches typically rely on simplified, case-specific designs under constrained conditions. This limitation primarily stems from theoretical challenges in comprehensively understanding thermoelectric transport in three-dimensional (3D) materials under varied thermal environments. Here, we develop an analytical theoretical framework to rigorously examines power generation in 3D thermoelectric materials across diverse thermal boundary conditions. Based on this framework, we propose a universal geometric design principle to optimize 3D materials for maximum power generation and introduce a universal figure of merit that comprehensively integrates material properties, geometry, and boundary conditions. Experimental validation using optimized 3D-printed (Bi, Sb)2Te3 legs demonstrates significant enhancements in performance. This study establishes a robust theoretical foundation and practical design strategy, advancing thermoelectric energy harvesting beyond traditional material-property-based optimizations.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).