Contrasting biological production trends over land and ocean

IF 27.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Yulong Zhang, Wenhong Li, Ge Sun, Jiafu Mao, Matthew Dannenberg, Jingfeng Xiao, Zuchuan Li, Haipeng Zhao, Qianru Zhang, Shineng Hu, Conghe Song, Nicolas Cassar
{"title":"Contrasting biological production trends over land and ocean","authors":"Yulong Zhang, Wenhong Li, Ge Sun, Jiafu Mao, Matthew Dannenberg, Jingfeng Xiao, Zuchuan Li, Haipeng Zhao, Qianru Zhang, Shineng Hu, Conghe Song, Nicolas Cassar","doi":"10.1038/s41558-025-02375-1","DOIUrl":null,"url":null,"abstract":"Terrestrial and marine ecosystems constitute the primary components of the Earth’s biosphere, yet their photosynthetic productions are typically studied separately, which limits understanding of planetary carbon uptake and biosphere health. Here, using multiple satellite-derived products, we identify contrasting net primary production (NPP) trends between land and ocean, probably reflecting their differential sensitivity to climate warming, especially in tropical regions. Planetary NPP shows an overall increase of 0.11 ± 0.13 PgC yr−1 (P = 0.05) from 2003 to 2021, driven by a significant terrestrial enhancement of 0.20 ± 0.07 PgC yr−1 (P < 0.001) and partially offset by an oceanic decline of −0.12 ± 0.12 PgC yr−1 (P = 0.07). While land contributes to the strong upwards NPP trend, the interannual variability in global NPP is predominantly driven by the ocean, especially during strong El Niño–Southern Oscillation events. Our findings highlight the resilience and potential vulnerability of biosphere primary productivity in a warming climate, calling for integrated land–ocean monitoring and assessment to support climate mitigation initiatives. The authors jointly assess the changes in land and ocean net primary production from 2003 to 2021. They show contrasting trends, with overall planetary increases (0.11 ± 0.13 PgC yr−1) driven by terrestrial enhancement and offset by oceanic decline.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"15 8","pages":"880-888"},"PeriodicalIF":27.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-025-02375-1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Terrestrial and marine ecosystems constitute the primary components of the Earth’s biosphere, yet their photosynthetic productions are typically studied separately, which limits understanding of planetary carbon uptake and biosphere health. Here, using multiple satellite-derived products, we identify contrasting net primary production (NPP) trends between land and ocean, probably reflecting their differential sensitivity to climate warming, especially in tropical regions. Planetary NPP shows an overall increase of 0.11 ± 0.13 PgC yr−1 (P = 0.05) from 2003 to 2021, driven by a significant terrestrial enhancement of 0.20 ± 0.07 PgC yr−1 (P < 0.001) and partially offset by an oceanic decline of −0.12 ± 0.12 PgC yr−1 (P = 0.07). While land contributes to the strong upwards NPP trend, the interannual variability in global NPP is predominantly driven by the ocean, especially during strong El Niño–Southern Oscillation events. Our findings highlight the resilience and potential vulnerability of biosphere primary productivity in a warming climate, calling for integrated land–ocean monitoring and assessment to support climate mitigation initiatives. The authors jointly assess the changes in land and ocean net primary production from 2003 to 2021. They show contrasting trends, with overall planetary increases (0.11 ± 0.13 PgC yr−1) driven by terrestrial enhancement and offset by oceanic decline.

Abstract Image

Abstract Image

对比陆地和海洋生物生产趋势
陆地和海洋生态系统构成地球生物圈的主要组成部分,但它们的光合作用产物通常是分开研究的,这限制了对行星碳吸收和生物圈健康的理解。在这里,我们使用多种卫星衍生产品,确定了陆地和海洋之间不同的净初级生产(NPP)趋势,这可能反映了它们对气候变暖的不同敏感性,特别是在热带地区。2003 - 2021年,行星NPP总体增加了0.11±0.13 PgC yr - 1 (P = 0.05),其中陆地NPP增加了0.20±0.07 PgC yr - 1 (P < 0.001),海洋NPP减少了- 0.12±0.12 PgC yr - 1 (P = 0.07),部分抵消了陆地NPP的增加。虽然陆地对NPP的上升趋势有贡献,但全球NPP的年际变化主要是由海洋驱动的,特别是在强El Niño-Southern涛动事件期间。我们的研究结果强调了生物圈初级生产力在变暖气候下的复原力和潜在脆弱性,呼吁进行陆地-海洋综合监测和评估,以支持气候减缓举措。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Climate Change
Nature Climate Change ENVIRONMENTAL SCIENCES-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
40.30
自引率
1.60%
发文量
267
审稿时长
4-8 weeks
期刊介绍: Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large. The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests. Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles. Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信