Disrupting Biofilm Tolerance by Ionic Microbubble-Mediated Copper Ion Surge for Infection Clearance

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-31 DOI:10.1021/acsnano.5c08035
Xiaoye Li, Qiang Li, Ao He, Meng Dang, Yu Zhang, Minjin Wang, Qinhong Sun, Zhuo Dai, Meng Ding, Jingben Zheng, Yongbin Mou*, Weijun Xiu* and Heng Dong*, 
{"title":"Disrupting Biofilm Tolerance by Ionic Microbubble-Mediated Copper Ion Surge for Infection Clearance","authors":"Xiaoye Li,&nbsp;Qiang Li,&nbsp;Ao He,&nbsp;Meng Dang,&nbsp;Yu Zhang,&nbsp;Minjin Wang,&nbsp;Qinhong Sun,&nbsp;Zhuo Dai,&nbsp;Meng Ding,&nbsp;Jingben Zheng,&nbsp;Yongbin Mou*,&nbsp;Weijun Xiu* and Heng Dong*,&nbsp;","doi":"10.1021/acsnano.5c08035","DOIUrl":null,"url":null,"abstract":"<p >Bacterial infections caused by drug-resistant bacteria persist due to biofilm-mediated tolerance, which limits the efficacy of both antimicrobial agents and host immune defenses. Here, we develop ionic microbubbles (MB-CuTA) self-assembled by Fe<sub>3</sub>O<sub>4</sub>@CuTA nanoparticles to enhance copper ion-mediated antibiofilm therapy. Upon ultrasound activation, MB-CuTA undergoes inertial cavitation, disrupting biofilm integrity and generating a localized surge of copper ions. This process achieves a dual therapeutic effect: (1) disruption of bacterial metabolic homeostasis, thereby overcoming the intrinsic resistance of biofilms to conventional antimicrobial agents, and (2) activation of cellular immunity to effectively counteract bacterial immune evasion mechanisms. By breaking biofilm tolerance through both metabolic and immunological pathways, our strategy enables deep copper ion penetration in biofilms and effective infection clearance in both mouse implant infection and peritonitis infection models. Our approach introduces a biofilm tolerance disruption method through inducing bacterial cuproptosis-like death and cellular immunity activation, offering a promising strategy against biofilm infections.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 31","pages":"28624–28643"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c08035","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial infections caused by drug-resistant bacteria persist due to biofilm-mediated tolerance, which limits the efficacy of both antimicrobial agents and host immune defenses. Here, we develop ionic microbubbles (MB-CuTA) self-assembled by Fe3O4@CuTA nanoparticles to enhance copper ion-mediated antibiofilm therapy. Upon ultrasound activation, MB-CuTA undergoes inertial cavitation, disrupting biofilm integrity and generating a localized surge of copper ions. This process achieves a dual therapeutic effect: (1) disruption of bacterial metabolic homeostasis, thereby overcoming the intrinsic resistance of biofilms to conventional antimicrobial agents, and (2) activation of cellular immunity to effectively counteract bacterial immune evasion mechanisms. By breaking biofilm tolerance through both metabolic and immunological pathways, our strategy enables deep copper ion penetration in biofilms and effective infection clearance in both mouse implant infection and peritonitis infection models. Our approach introduces a biofilm tolerance disruption method through inducing bacterial cuproptosis-like death and cellular immunity activation, offering a promising strategy against biofilm infections.

Abstract Image

离子微泡介导的铜离子浪涌破坏生物膜耐受性以清除感染。
由于生物膜介导的耐受性,耐药细菌引起的细菌感染持续存在,这限制了抗菌药物和宿主免疫防御的功效。在这里,我们开发了离子微泡(MB-CuTA),由Fe3O4@CuTA纳米颗粒自组装,以增强铜离子介导的抗生素膜治疗。超声波激活后,MB-CuTA会发生惯性空化,破坏生物膜的完整性,并产生局部铜离子激增。这一过程实现了双重治疗效果:(1)破坏细菌代谢稳态,从而克服生物膜对常规抗菌药物的内在耐药性;(2)激活细胞免疫,有效对抗细菌免疫逃避机制。通过代谢和免疫途径打破生物膜耐受,我们的策略在小鼠种植体感染和腹膜炎感染模型中实现了铜离子在生物膜中的深度渗透和有效的感染清除。我们的方法引入了一种生物膜耐受破坏方法,通过诱导细菌铜中毒样死亡和细胞免疫激活,为对抗生物膜感染提供了一种有希望的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信