Engineering Plant Holobionts for Climate-Resilient Agriculture

Nayanci Portal-Gonzalez, Wenbo Wang, Wenxing He, Ramon Santos-Bermudez
{"title":"Engineering Plant Holobionts for Climate-Resilient Agriculture","authors":"Nayanci Portal-Gonzalez, Wenbo Wang, Wenxing He, Ramon Santos-Bermudez","doi":"10.1093/ismejo/wraf158","DOIUrl":null,"url":null,"abstract":"The plant holobiont—an integrated unit of the host and its microbiome—has co-evolved through ecological and genetic interactions. Microbiome engineering offers a promising route to enhance resilience in response to climate stress, soil degradation, and yield stagnation. This review presents an integrated framework combining microbial ecology, synthetic biology, and computational modeling to rationally design synthetic microbial communities (SynComs) for agriculture. We outline ecological principles—priority effects, keystone taxa, and functional redundancy—that shape microbiome assembly and guide SynCom design. Strategies like CRISPR interference, biosensor circuits, and quorum-sensing modules enable programmable microbial functions. We also highlight the predictive potential of in silico modeling—including genome-scale metabolic models, dynamic flux balance analysis, and machine learning—to simulate interactions, optimize SynCom composition, and enhance design accuracy. To bridge lab and field, we discuss native microbial chassis, encapsulation, and precision delivery as tools for scalable, ecosystem-integrated deployment. We introduce the concept of the programmable holobiont: an engineered plant-microbe partnership capable of dynamic feedback, interkingdom signaling, and ecological memory. This systems-level perspective reframes plants as designable ecosystems. By synthesizing cross-disciplinary advances, we offer a roadmap for climate-resilient agriculture, where engineered microbiomes improve sustainability, yield stability, and environmental adaptation.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The plant holobiont—an integrated unit of the host and its microbiome—has co-evolved through ecological and genetic interactions. Microbiome engineering offers a promising route to enhance resilience in response to climate stress, soil degradation, and yield stagnation. This review presents an integrated framework combining microbial ecology, synthetic biology, and computational modeling to rationally design synthetic microbial communities (SynComs) for agriculture. We outline ecological principles—priority effects, keystone taxa, and functional redundancy—that shape microbiome assembly and guide SynCom design. Strategies like CRISPR interference, biosensor circuits, and quorum-sensing modules enable programmable microbial functions. We also highlight the predictive potential of in silico modeling—including genome-scale metabolic models, dynamic flux balance analysis, and machine learning—to simulate interactions, optimize SynCom composition, and enhance design accuracy. To bridge lab and field, we discuss native microbial chassis, encapsulation, and precision delivery as tools for scalable, ecosystem-integrated deployment. We introduce the concept of the programmable holobiont: an engineered plant-microbe partnership capable of dynamic feedback, interkingdom signaling, and ecological memory. This systems-level perspective reframes plants as designable ecosystems. By synthesizing cross-disciplinary advances, we offer a roadmap for climate-resilient agriculture, where engineered microbiomes improve sustainability, yield stability, and environmental adaptation.
气候适应型农业的植物全息生物工程
植物整体生物是寄主及其微生物群的一个完整单位,通过生态和遗传相互作用共同进化。微生物组工程为提高对气候胁迫、土壤退化和产量停滞的适应能力提供了一条有希望的途径。本文综述了微生物生态学、合成生物学和计算建模相结合的综合框架,以合理设计农业合成微生物群落。我们概述了生态原则-优先效应,关键类群和功能冗余-塑造微生物组组装和指导SynCom设计。CRISPR干扰、生物传感器电路和群体感应模块等策略使可编程微生物功能成为可能。我们还强调了计算机建模的预测潜力,包括基因组尺度的代谢模型,动态通量平衡分析和机器学习,以模拟相互作用,优化SynCom组成,并提高设计准确性。为了连接实验室和现场,我们讨论了原生微生物底盘、封装和精确交付作为可扩展的、生态系统集成部署的工具。我们介绍了可编程全息生物的概念:一种能够动态反馈、界间信号和生态记忆的工程植物-微生物伙伴关系。这种系统级视角将植物重新定义为可设计的生态系统。通过综合跨学科进展,我们为气候适应型农业提供了路线图,其中工程微生物组可提高可持续性,产量稳定性和环境适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信