Biophotonic function of the calcium carbonate skeleton in Lithothamnion crispatum: A possible adaptation of coralline algae to low-light environments

IF 9.6 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Sergio Balestrieri , Francesco Rendina , Vito Mocella , Alberto Bermejo , Giovanni Fulvio Russo , Edoardo De Tommasi
{"title":"Biophotonic function of the calcium carbonate skeleton in Lithothamnion crispatum: A possible adaptation of coralline algae to low-light environments","authors":"Sergio Balestrieri ,&nbsp;Francesco Rendina ,&nbsp;Vito Mocella ,&nbsp;Alberto Bermejo ,&nbsp;Giovanni Fulvio Russo ,&nbsp;Edoardo De Tommasi","doi":"10.1016/j.actbio.2025.07.041","DOIUrl":null,"url":null,"abstract":"<div><div>Coralline algae (Corallinophycidae, Rhodophyta) have adapted to a broad range of marine habitats, including low-light mesophotic zones, yet the potential role of their high-Mg calcite skeleton in light harvesting remains poorly investigated. Here, we examine the skeletal architecture of <em>Lithothamnion crispatum</em> rhodoliths through X-ray micro-computed tomography (<span><math><mi>μ</mi></math></span>-CT) and scanning electron microscopy (SEM), revealing a distinct Voronoi-like tessellation of the epithallial cells associated with a nearly hyperuniform arrangement of submicrometric pores. This structural organization can promote the penetration of scattered light into the thallus, enhancing photon availability in deeper tissues. To further assess the optical implications of the skeleton morphology, we integrated full-wave finite element method (FEM) and ray-tracing simulations, demonstrating that the combination of calcite birefringence and quasi-ordered cell filaments facilitates the superposition of the optical field with chloroplast-rich regions, particularly within a spectral range relevant to deep-water photosynthesis. Our findings highlight for the first time a potential biophotonic function of coralline algal skeletons, opening new perspectives on the role of biomineralization in light manipulation and energy capture in mesophotic habitats. This may help explain the remarkable evolutionary success of coralline algae in low-light environments compared to fleshy macroalgae.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"203 ","pages":"Pages 523-534"},"PeriodicalIF":9.6000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125005380","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Coralline algae (Corallinophycidae, Rhodophyta) have adapted to a broad range of marine habitats, including low-light mesophotic zones, yet the potential role of their high-Mg calcite skeleton in light harvesting remains poorly investigated. Here, we examine the skeletal architecture of Lithothamnion crispatum rhodoliths through X-ray micro-computed tomography (μ-CT) and scanning electron microscopy (SEM), revealing a distinct Voronoi-like tessellation of the epithallial cells associated with a nearly hyperuniform arrangement of submicrometric pores. This structural organization can promote the penetration of scattered light into the thallus, enhancing photon availability in deeper tissues. To further assess the optical implications of the skeleton morphology, we integrated full-wave finite element method (FEM) and ray-tracing simulations, demonstrating that the combination of calcite birefringence and quasi-ordered cell filaments facilitates the superposition of the optical field with chloroplast-rich regions, particularly within a spectral range relevant to deep-water photosynthesis. Our findings highlight for the first time a potential biophotonic function of coralline algal skeletons, opening new perspectives on the role of biomineralization in light manipulation and energy capture in mesophotic habitats. This may help explain the remarkable evolutionary success of coralline algae in low-light environments compared to fleshy macroalgae.

Abstract Image

crispatum中碳酸钙骨架的生物光子功能:珊瑚藻对弱光环境的可能适应。
珊瑚藻(Corallinophycidae, Rhodophyta)已经适应了广泛的海洋栖息地,包括低光的中鳍区,但其高镁方解石骨架在光采集中的潜在作用仍未得到充分研究。在这里,我们通过x射线微计算机断层扫描(μ-CT)和扫描电子显微镜(SEM)检查了石鳖(Lithothamnion crispatum) rhodolith的骨骼结构,揭示了与亚微米孔几乎高度均匀排列相关的上皮细胞的明显voronoi样镶嵌。这种结构组织可以促进散射光进入菌体,提高深层组织的光子可用性。为了进一步评估骨骼形态的光学意义,我们将全波有限元方法(FEM)和光线追踪模拟结合起来,证明方解石双折射和准有序细胞细丝的组合有助于光学场与叶绿体丰富区域的叠加,特别是在与深水光合作用相关的光谱范围内。我们的发现首次强调了珊瑚藻骨骼潜在的生物光子功能,为生物矿化在中孔生境光操纵和能量捕获中的作用开辟了新的视角。这可能有助于解释珊瑚藻在弱光环境下的显著进化成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信