Artificial intelligence-enabled single-lead electrocardiogram in early detection of ischemic heart disease.

IF 2.8 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Wen-Hua Song, Gary Tse, Kang-Yin Chen, Tong Liu
{"title":"Artificial intelligence-enabled single-lead electrocardiogram in early detection of ischemic heart disease.","authors":"Wen-Hua Song, Gary Tse, Kang-Yin Chen, Tong Liu","doi":"10.4330/wjc.v17.i7.108510","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid advancement and widespread adoption of new artificial intelligence (AI) technologies, personalized medicine and more accurate diagnosis using medical imaging are now possible. Among its many applications, AI has shown remarkable potential in the analysis of electrocardiograms (ECGs), which provide essential insights into the electrical activity of the heart and allowing early detection of ischemic heart disease (IHD). Notably, single-lead ECG (SLECG) analysis has emerged as a key focus in recent research due to its potential for widespread and efficient screening. This editorial focuses on the latest research progress of AI-enabled SLECG utilized in the diagnosis of IHD.</p>","PeriodicalId":23800,"journal":{"name":"World Journal of Cardiology","volume":"17 7","pages":"108510"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304860/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4330/wjc.v17.i7.108510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid advancement and widespread adoption of new artificial intelligence (AI) technologies, personalized medicine and more accurate diagnosis using medical imaging are now possible. Among its many applications, AI has shown remarkable potential in the analysis of electrocardiograms (ECGs), which provide essential insights into the electrical activity of the heart and allowing early detection of ischemic heart disease (IHD). Notably, single-lead ECG (SLECG) analysis has emerged as a key focus in recent research due to its potential for widespread and efficient screening. This editorial focuses on the latest research progress of AI-enabled SLECG utilized in the diagnosis of IHD.

Abstract Image

人工智能单导联心电图在缺血性心脏病早期检测中的应用。
随着新的人工智能(AI)技术的快速发展和广泛采用,现在可以使用医学成像进行个性化医疗和更准确的诊断。在众多应用中,人工智能在分析心电图(ECGs)方面显示出了巨大的潜力,这为心脏的电活动提供了重要的见解,并允许早期发现缺血性心脏病(IHD)。值得注意的是,单导联心电图(SLECG)分析已成为最近研究的重点,因为它具有广泛和有效筛查的潜力。本文重点介绍人工智能辅助SLECG在IHD诊断中的最新研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
World Journal of Cardiology
World Journal of Cardiology CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
3.30
自引率
5.30%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信