{"title":"Biosynthesis of guanidine-containing natural products in cyanobacteria.","authors":"Wenhe Zhang, Richiro Ushimaru","doi":"10.1093/jimb/kuaf024","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanobacteria are prolific producers of structurally diverse and biologically potent natural products, a subset of which feature guanidino moieties. Introduction and modification of the guanidine group confer tuned basicity and enable extensive hydrogen bonding, cation-π, and electrostatic interactions, facilitating high-affinity binding to numerous biological targets. Although the enzymatic processes responsible for guanidine modifications in cyanobacterial pathways remain somewhat obscure, recent investigations have begun to clarify the biosynthetic machinery that mediates these distinctive transformations. In this review, we summarize these advances, with particular emphasis on the enzymatic steps responsible for guanidine installation and tailoring. These enzymatic transformations include N-prenylation, cyclization, and tricyclic guanidinium formation, representing rare or previously undescribed biosynthetic strategies in nature. This review provides new insights into the metabolic and enzymatic versatility of cyanobacteria and a foundation for future advances in enzyme engineering and therapeutic discovery. One-Sentence Summary: This review highlights recent advances in understanding how cyanobacteria enzymatically install and modify guanidino groups to produce bioactive natural products.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuaf024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanobacteria are prolific producers of structurally diverse and biologically potent natural products, a subset of which feature guanidino moieties. Introduction and modification of the guanidine group confer tuned basicity and enable extensive hydrogen bonding, cation-π, and electrostatic interactions, facilitating high-affinity binding to numerous biological targets. Although the enzymatic processes responsible for guanidine modifications in cyanobacterial pathways remain somewhat obscure, recent investigations have begun to clarify the biosynthetic machinery that mediates these distinctive transformations. In this review, we summarize these advances, with particular emphasis on the enzymatic steps responsible for guanidine installation and tailoring. These enzymatic transformations include N-prenylation, cyclization, and tricyclic guanidinium formation, representing rare or previously undescribed biosynthetic strategies in nature. This review provides new insights into the metabolic and enzymatic versatility of cyanobacteria and a foundation for future advances in enzyme engineering and therapeutic discovery. One-Sentence Summary: This review highlights recent advances in understanding how cyanobacteria enzymatically install and modify guanidino groups to produce bioactive natural products.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology