A Durable Sorbent to Unlock the Sustainable Future: Room Temperature and Scalable Production of Aluminium Formate through Mechanochemical Method for Efficient and Selective CO2 Capture.

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Venkadeshkumar Ramar, Xianglong Zhang, Hao Zhang, Huijun Tan, Yaping Zhao
{"title":"A Durable Sorbent to Unlock the Sustainable Future: Room Temperature and Scalable Production of Aluminium Formate through Mechanochemical Method for Efficient and Selective CO<sub>2</sub> Capture.","authors":"Venkadeshkumar Ramar, Xianglong Zhang, Hao Zhang, Huijun Tan, Yaping Zhao","doi":"10.1002/smtd.202500717","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon dioxide (CO<sub>2</sub>) capture is essential for addressing climate change, requiring the development of efficient, scalable, and sustainable sorbent materials. This study presents microporous aluminum formate (ALF) synthesized via a novel, room-temperature mechanochemical ball milling method. This green, solvent-free approach enables kilogram-scale production using inexpensive raw materials under ambient conditions. The resulting ALF exhibits a high CO<sub>2</sub> adsorption capacity of 3.97 mmol·g<sup>-1</sup> at 1 bar and 278 K, with a moderate isosteric heat of adsorption (Q<sub>st</sub> = 42.1 kJ·mol<sup>-1</sup>), allowing energy-efficient regeneration. ALF also demonstrates rapid adsorption kinetics (90% uptake within 5 min), excellent recyclability over 100 cycles, and remarkable CO<sub>2</sub>/N<sub>2</sub> selectivity of 341, highlighting its suitability for practical applications. Importantly, the material maintains significant CO<sub>2</sub> uptake (3.26 mmol·g<sup>-1</sup>) even under humid conditions. ALF can be shaped into mechanically robust, millimeter-sized pellets, making it ideal for industrial-scale deployment. The comparative evaluation shows that ALF's CO<sub>2</sub> capture performance rivals leading MOFs such as CALF-20, UTSA-16, MOF-74 variants, and SIFSIX-series materials. Overall, ALF emerges as a cost-effective, durable, and high-performing sorbent, offering a promising pathway toward scalable, sustainable carbon capture solutions.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e00717"},"PeriodicalIF":9.1000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500717","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dioxide (CO2) capture is essential for addressing climate change, requiring the development of efficient, scalable, and sustainable sorbent materials. This study presents microporous aluminum formate (ALF) synthesized via a novel, room-temperature mechanochemical ball milling method. This green, solvent-free approach enables kilogram-scale production using inexpensive raw materials under ambient conditions. The resulting ALF exhibits a high CO2 adsorption capacity of 3.97 mmol·g-1 at 1 bar and 278 K, with a moderate isosteric heat of adsorption (Qst = 42.1 kJ·mol-1), allowing energy-efficient regeneration. ALF also demonstrates rapid adsorption kinetics (90% uptake within 5 min), excellent recyclability over 100 cycles, and remarkable CO2/N2 selectivity of 341, highlighting its suitability for practical applications. Importantly, the material maintains significant CO2 uptake (3.26 mmol·g-1) even under humid conditions. ALF can be shaped into mechanically robust, millimeter-sized pellets, making it ideal for industrial-scale deployment. The comparative evaluation shows that ALF's CO2 capture performance rivals leading MOFs such as CALF-20, UTSA-16, MOF-74 variants, and SIFSIX-series materials. Overall, ALF emerges as a cost-effective, durable, and high-performing sorbent, offering a promising pathway toward scalable, sustainable carbon capture solutions.

一种持久的吸附剂开启可持续发展的未来:通过机械化学方法实现高效和选择性CO2捕获的室温和可扩展的甲酸铝生产。
二氧化碳(CO2)捕获对于应对气候变化至关重要,需要开发高效、可扩展和可持续的吸附材料。本文介绍了一种新型的室温机械化学球磨法制备微孔甲酸铝(ALF)。这种绿色,无溶剂的方法可以在环境条件下使用廉价的原材料进行公斤级生产。所得ALF在1 bar和278 K条件下的CO2吸附量为3.97 mmol·g-1,具有中等等容吸附热(Qst = 42.1 kJ·mol-1),可实现高效再生。ALF还表现出快速的吸附动力学(5分钟内吸附90%),100次循环的优良可回收性,以及341的CO2/N2选择性,突出了其实际应用的适用性。重要的是,即使在潮湿条件下,该材料也能保持显著的二氧化碳吸收量(3.26 mmol·g-1)。ALF可以塑造成机械坚固,毫米大小的颗粒,使其成为工业规模部署的理想选择。对比评估表明,ALF的二氧化碳捕获性能可与CALF-20、UTSA-16、MOF-74改型和sif6系列材料等领先的mof相媲美。总的来说,ALF作为一种经济、耐用、高性能的吸附剂出现,为可扩展、可持续的碳捕获解决方案提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信