Predictive Modelling of Solvent Effects on Drug Incorporation into Polymeric Nanocarriers: A Machine Learning Approach.

IF 4.3 3区 化学 Q2 POLYMER SCIENCE
Wei Ge, Ramindu De Silva, Yanan Fan, Scott A Sisson, Martina H Stenzel
{"title":"Predictive Modelling of Solvent Effects on Drug Incorporation into Polymeric Nanocarriers: A Machine Learning Approach.","authors":"Wei Ge, Ramindu De Silva, Yanan Fan, Scott A Sisson, Martina H Stenzel","doi":"10.1002/marc.202500251","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to identify solvent characteristics that enhance drug loading in polymeric micelles. Polyethylene glycol-block-polystyrene (PEG-b-PS) and curcumin were used as model compounds to investigate the impact of 40 different solvent mixtures on drug loading during flow-based assembly. We tested five algorithms: Random Forest (RF), Gradient Boosting (GP), XGBoost, Support Vector Regression (SVR), and Multilayer Perceptron (MLP), with the MLP model proving to be the most effective among them. To explain the model's predictions, we utilized SHapley Additive exPlanations (SHAP) values to identify solvent properties that contribute to high drug loading. Of the nine descriptors examined-curcumin solubility, polarity, Hildebrand solubility parameters, dipole moment, dielectric constants, viscosity, and Hansen solubility parameters (δD, δP, and δH)-solubility emerged as the most critical factor. Therefore, to achieve optimal drug loading, researchers should prioritize solvents with the highest solubility.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e00251"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202500251","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to identify solvent characteristics that enhance drug loading in polymeric micelles. Polyethylene glycol-block-polystyrene (PEG-b-PS) and curcumin were used as model compounds to investigate the impact of 40 different solvent mixtures on drug loading during flow-based assembly. We tested five algorithms: Random Forest (RF), Gradient Boosting (GP), XGBoost, Support Vector Regression (SVR), and Multilayer Perceptron (MLP), with the MLP model proving to be the most effective among them. To explain the model's predictions, we utilized SHapley Additive exPlanations (SHAP) values to identify solvent properties that contribute to high drug loading. Of the nine descriptors examined-curcumin solubility, polarity, Hildebrand solubility parameters, dipole moment, dielectric constants, viscosity, and Hansen solubility parameters (δD, δP, and δH)-solubility emerged as the most critical factor. Therefore, to achieve optimal drug loading, researchers should prioritize solvents with the highest solubility.

溶剂对高分子纳米载体药物掺入影响的预测模型:一种机器学习方法。
本研究旨在确定溶剂的特性,提高药物在聚合物胶束的负载。以聚乙二醇-嵌段聚苯乙烯(PEG-b-PS)和姜黄素为模型化合物,研究了40种不同溶剂混合物对流动组装过程中药物装载的影响。我们测试了五种算法:随机森林(RF)、梯度增强(GP)、XGBoost、支持向量回归(SVR)和多层感知器(MLP),其中MLP模型被证明是最有效的。为了解释模型的预测,我们利用SHapley加性解释(SHAP)值来确定导致高药物负荷的溶剂性质。在姜黄素溶解度、极性、希尔德布兰德溶解度参数、偶极矩、介电常数、粘度和汉森溶解度参数(δD、δP和δH)这九个描述符中,溶解度是最关键的因素。因此,为了达到最佳的载药量,研究人员应该优先考虑溶解度最高的溶剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信