Reconfigurable In-S Coordination in SPAN Cathodes: Unlocking High Sulfur Utilization and Fast Kinetics for Practical Li‒S Batteries.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Cheng Huang, Yi Gong, Qi Zhu, Miaoran Xu, Kai Yang, José V Anguita, Wei Zhang, S Ravi P Silva, Yanfeng Gao, Zongtao Zhang
{"title":"Reconfigurable In-S Coordination in SPAN Cathodes: Unlocking High Sulfur Utilization and Fast Kinetics for Practical Li‒S Batteries.","authors":"Cheng Huang, Yi Gong, Qi Zhu, Miaoran Xu, Kai Yang, José V Anguita, Wei Zhang, S Ravi P Silva, Yanfeng Gao, Zongtao Zhang","doi":"10.1002/advs.202507385","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfurized polyacrylonitrile (SPAN) has emerged as a promising cathode material for high-energy-density lithium‒sulfur (Li‒S) batteries due to its ability to confine sulfur and suppress polysulfide shuttling. However, conventional SPAN suffers from sluggish conversion kinetics and limited sulfur utilization, especially at high sulfur loadings. In this work, reconfigurable indium‒sulfur (In-S) coordination into SPAN to dynamically regulate sulfur bonding states is introduced. The non-crystalline In-S network reversibly anchors and releases sulfur during cycling, accelerating redox reactions while suppressing phase segregation. Structural analysis reveals atomically dispersed In-S coordination without crystalline inactive phases, achieving an active material content of 47.4 wt.% with only 1.18 wt.% indium addition (≈23% higher than conventional SPAN). Optimized In<sub>5</sub>-SPAN cathodes deliver a high specific capacity of 1048 mAh·g<sup>-1</sup> at 0.5 A g<sup>-1</sup> under practical conditions of high SPAN mass loading (8.7 mg cm<sup>-2</sup>) and lean electrolyte (E/SPAN = 4.1). This performance surpasses state-of-the-art SPAN-based cathodes under comparable lean-electrolyte and high-loading conditions. These findings illustrate a novel reconfigurable metal‒sulfur coordination strategy for next-generation Li‒S batteries with both high-energy-density and long cycle life.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e07385"},"PeriodicalIF":14.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202507385","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfurized polyacrylonitrile (SPAN) has emerged as a promising cathode material for high-energy-density lithium‒sulfur (Li‒S) batteries due to its ability to confine sulfur and suppress polysulfide shuttling. However, conventional SPAN suffers from sluggish conversion kinetics and limited sulfur utilization, especially at high sulfur loadings. In this work, reconfigurable indium‒sulfur (In-S) coordination into SPAN to dynamically regulate sulfur bonding states is introduced. The non-crystalline In-S network reversibly anchors and releases sulfur during cycling, accelerating redox reactions while suppressing phase segregation. Structural analysis reveals atomically dispersed In-S coordination without crystalline inactive phases, achieving an active material content of 47.4 wt.% with only 1.18 wt.% indium addition (≈23% higher than conventional SPAN). Optimized In5-SPAN cathodes deliver a high specific capacity of 1048 mAh·g-1 at 0.5 A g-1 under practical conditions of high SPAN mass loading (8.7 mg cm-2) and lean electrolyte (E/SPAN = 4.1). This performance surpasses state-of-the-art SPAN-based cathodes under comparable lean-electrolyte and high-loading conditions. These findings illustrate a novel reconfigurable metal‒sulfur coordination strategy for next-generation Li‒S batteries with both high-energy-density and long cycle life.

SPAN阴极中的可重构in - s配位:解锁实用锂电池的高硫利用率和快速动力学。
硫化聚丙烯腈(SPAN)具有限制硫和抑制多硫化物穿梭的能力,是高能量密度锂硫(Li-S)电池极具前景的正极材料。然而,传统的SPAN存在转化动力学缓慢和硫利用率有限的问题,特别是在高硫负荷下。本文将铟硫(In- s)可重构配位引入到SPAN中,以动态调节硫键状态。非晶In-S网络在循环过程中可逆地锚定和释放硫,加速氧化还原反应,同时抑制相偏析。结构分析表明,原子分散的In-S配位没有结晶非活性相,仅添加1.18 wt.%的铟(比传统SPAN高出约23%),活性物质含量为47.4 wt.%。优化后的In5-SPAN阴极在高SPAN质量负载(8.7 mg cm-2)和低电解质(E/SPAN = 4.1)的实际条件下,在0.5 a g-1下可提供1048 mAh·g-1的高比容量。这种性能超过了最先进的基于span的阴极在可比的贫电解质和高负载条件下。这些发现为具有高能量密度和长循环寿命的下一代锂电池提供了一种新的可重构金属-硫配位策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信