SAWL-Net: A Statistical Attentions and Wavelet Aided Lightweight Network for Classification of Cancers in Histopathological Images

Surya Majumder;Aishik Paul;Friedhelm Schwenker;Ram Sarkar
{"title":"SAWL-Net: A Statistical Attentions and Wavelet Aided Lightweight Network for Classification of Cancers in Histopathological Images","authors":"Surya Majumder;Aishik Paul;Friedhelm Schwenker;Ram Sarkar","doi":"10.1109/TAI.2025.3536424","DOIUrl":null,"url":null,"abstract":"Addressing the formidable challenges posed by the diagnosis and management of various types of cancer, including breast, colon, lung, and colorectal cancer, demands innovative solutions to streamline histopathological analysis processes. In this study, we propose a novel lightweight convolutional neural network (CNN) called statistical attentions and wavelet aided lightweight network (SAWL-Net) architecture based on MobileNetV2 equipped with hybrid statistical similarity and wave format-aided attention mechanisms, specifically tailored to the demands of cancer histopathology. By leveraging the capabilities, our model incorporates a lightweight design while ensuring high-performance outcomes. We introduce a unique combination of Pearson correlation coefficient, Spearman rank correlation, and cosine similarity metrics, alongside a specialized wave conversion technique to enhance the detection of similarities across different channels of histopathological data, while providing a holistic approach to the model. In this study, we have considered breast, colorectal, and lung & colon cancer datasets for experimentation. Notably, our model surpasses prevailing state-of-the-art methodologies, showcasing its efficacy in optimizing diagnostic accuracy and expediting treatment strategies for varied cancer types. Our codes are publicly available at the GitHub repository.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 8","pages":"2051-2060"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858182","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10858182/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing the formidable challenges posed by the diagnosis and management of various types of cancer, including breast, colon, lung, and colorectal cancer, demands innovative solutions to streamline histopathological analysis processes. In this study, we propose a novel lightweight convolutional neural network (CNN) called statistical attentions and wavelet aided lightweight network (SAWL-Net) architecture based on MobileNetV2 equipped with hybrid statistical similarity and wave format-aided attention mechanisms, specifically tailored to the demands of cancer histopathology. By leveraging the capabilities, our model incorporates a lightweight design while ensuring high-performance outcomes. We introduce a unique combination of Pearson correlation coefficient, Spearman rank correlation, and cosine similarity metrics, alongside a specialized wave conversion technique to enhance the detection of similarities across different channels of histopathological data, while providing a holistic approach to the model. In this study, we have considered breast, colorectal, and lung & colon cancer datasets for experimentation. Notably, our model surpasses prevailing state-of-the-art methodologies, showcasing its efficacy in optimizing diagnostic accuracy and expediting treatment strategies for varied cancer types. Our codes are publicly available at the GitHub repository.
SAWL-Net:一种统计关注和小波辅助的轻量级网络用于组织病理图像中的癌症分类
为了应对各种类型癌症(包括乳腺癌、结肠癌、肺癌和结直肠癌)的诊断和管理所带来的巨大挑战,需要创新的解决方案来简化组织病理学分析过程。在这项研究中,我们提出了一种新的轻量级卷积神经网络(CNN),称为统计关注和基于MobileNetV2的小波辅助轻量级网络(SAWL-Net)架构,该架构配备了混合统计相似性和波格式辅助注意机制,专门针对癌症组织病理学的需求。通过利用这些功能,我们的模型结合了轻量级设计,同时确保了高性能的结果。我们引入了Pearson相关系数、Spearman秩相关和余弦相似性度量的独特组合,以及专门的波转换技术,以增强对不同通道组织病理学数据相似性的检测,同时为模型提供整体方法。在这项研究中,我们考虑了乳腺癌、结肠直肠癌、肺癌和结肠癌的数据集进行实验。值得注意的是,我们的模型超越了目前最先进的方法,展示了其在优化诊断准确性和加快不同癌症类型治疗策略方面的功效。我们的代码在GitHub存储库中是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信