ContentDM: A Layout Diffusion Model for Content-Aware Layout Generation

Honglin Guo;Weizhi Nie;Ruidong Chen;Lanjun Wang;Guoqing Jin;Anan Liu
{"title":"ContentDM: A Layout Diffusion Model for Content-Aware Layout Generation","authors":"Honglin Guo;Weizhi Nie;Ruidong Chen;Lanjun Wang;Guoqing Jin;Anan Liu","doi":"10.1109/TAI.2025.3544172","DOIUrl":null,"url":null,"abstract":"Content-aware layout generation aims to produce fitting element arrangements based on the background contents, which is used for graphic design applications such as automatic poster layout design. In this article, we propose ContentDM, a layout diffusion model specifically designed for the content-aware layout generation task, overcoming the limitations suffered from existing methods: irrational arrangement among layout elements and lack of refining ability for coarse generated results. ContentDM defines the layout diffusion process through random perturbations applied to both the position and type of layout elements. During the denoising training phase, the content-aware layout generator is trained to reconstruct samples from these perturbed layouts. This process enables the model to learn the correct arrangement patterns within the layout elements, thereby enhancing the rationality of generated layouts. Moreover, we develop an iterative layout inference strategy to enable the layout generator to refine the generated layouts progressively, thereby enhancing the overall quality of the generation results. Extensive experiments demonstrate that ContentDM significantly outperforms existing methods, achieving state-of-the-art performance in content-aware layout generation, both in terms of visual quality and quantitative metrics.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 8","pages":"2215-2225"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10896943/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Content-aware layout generation aims to produce fitting element arrangements based on the background contents, which is used for graphic design applications such as automatic poster layout design. In this article, we propose ContentDM, a layout diffusion model specifically designed for the content-aware layout generation task, overcoming the limitations suffered from existing methods: irrational arrangement among layout elements and lack of refining ability for coarse generated results. ContentDM defines the layout diffusion process through random perturbations applied to both the position and type of layout elements. During the denoising training phase, the content-aware layout generator is trained to reconstruct samples from these perturbed layouts. This process enables the model to learn the correct arrangement patterns within the layout elements, thereby enhancing the rationality of generated layouts. Moreover, we develop an iterative layout inference strategy to enable the layout generator to refine the generated layouts progressively, thereby enhancing the overall quality of the generation results. Extensive experiments demonstrate that ContentDM significantly outperforms existing methods, achieving state-of-the-art performance in content-aware layout generation, both in terms of visual quality and quantitative metrics.
ContentDM:用于内容感知布局生成的布局扩散模型
内容感知布局生成的目的是根据背景内容生成适合的元素排列,用于自动海报布局设计等平面设计应用。本文提出了一种针对内容感知的布局生成任务而设计的布局扩散模型ContentDM,克服了现有方法存在的布局元素之间排列不合理以及对生成的粗糙结果缺乏细化能力的局限。ContentDM通过应用于布局元素的位置和类型的随机扰动来定义布局扩散过程。在去噪训练阶段,训练内容感知布局生成器从这些扰动布局中重构样本。这个过程使模型能够学习布局元素内部正确的排列模式,从而增强生成布局的合理性。此外,我们开发了一种迭代布局推理策略,使布局生成器能够逐步优化生成的布局,从而提高生成结果的整体质量。大量的实验表明,ContentDM显著优于现有的方法,在视觉质量和定量指标方面,在内容感知布局生成方面实现了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信