Fan Pressurization Method to Measure House Leakage Area Using Built-in Exhaust Fans and Window Openings as Reference Areas

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Y. Kurihara;K. Kobayashi;K. Watanabe
{"title":"Fan Pressurization Method to Measure House Leakage Area Using Built-in Exhaust Fans and Window Openings as Reference Areas","authors":"Y. Kurihara;K. Kobayashi;K. Watanabe","doi":"10.1109/JSEN.2025.3582369","DOIUrl":null,"url":null,"abstract":"The fan pressurization method described in ISO 9972:2015 evaluates the air permeability of houses by measuring the effective leakage area (ELA). This method uses a specialized blower equipped with a volumetric airflow meter and a differential pressure sensor. This study proposes an alternative that utilizes a differential pressure sensor along with household exhaust fans to depressurize a house. Additionally, the known area of an open house window is used to calibrate the ELA against the corresponding geometrical area. To validate this method, the relationship between the geometric leakage area and the ELA obtained through this approach, as well as comparisons with other methods, were examined via theoretical analysis and experiments in a small container space. In a single room in an actual building characterized by substantial leakage gaps, such as those around interior doors, the total leakage area measured with a gap meter was 311.5 cm2, and the proposed method yielded the same value, demonstrating excellent agreement between the two. The proposed method was tested in a 36-year-old American-style house with a total floor area of 226.59 m2 and resulted in an ELA of 672 cm2 and a C-value of 2.96 cm2/m2. The geometrically measurable leakage area and the area estimated using the proposed method showed good agreement, confirming the reliability of the approach. Furthermore, the C-value of 2.96 cm2/m2, derived from the ELA measured in an actual house experiment, falls within the typical range for residential buildings (110 cm2/m<inline-formula> <tex-math>${}^{{2}}\\text {)}$ </tex-math></inline-formula>.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 15","pages":"29880-29889"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11059734/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The fan pressurization method described in ISO 9972:2015 evaluates the air permeability of houses by measuring the effective leakage area (ELA). This method uses a specialized blower equipped with a volumetric airflow meter and a differential pressure sensor. This study proposes an alternative that utilizes a differential pressure sensor along with household exhaust fans to depressurize a house. Additionally, the known area of an open house window is used to calibrate the ELA against the corresponding geometrical area. To validate this method, the relationship between the geometric leakage area and the ELA obtained through this approach, as well as comparisons with other methods, were examined via theoretical analysis and experiments in a small container space. In a single room in an actual building characterized by substantial leakage gaps, such as those around interior doors, the total leakage area measured with a gap meter was 311.5 cm2, and the proposed method yielded the same value, demonstrating excellent agreement between the two. The proposed method was tested in a 36-year-old American-style house with a total floor area of 226.59 m2 and resulted in an ELA of 672 cm2 and a C-value of 2.96 cm2/m2. The geometrically measurable leakage area and the area estimated using the proposed method showed good agreement, confirming the reliability of the approach. Furthermore, the C-value of 2.96 cm2/m2, derived from the ELA measured in an actual house experiment, falls within the typical range for residential buildings (110 cm2/m ${}^{{2}}\text {)}$ .
以内置排风机和开窗作为参考面积测量房屋泄漏面积的风机加压法
ISO 9972:2015中描述的风扇增压方法通过测量有效泄漏面积(ELA)来评估房屋的透气性。这种方法使用配备有容积式气流计和差压传感器的专用鼓风机。这项研究提出了一种替代方案,即利用差压传感器和家用排气扇来给房子减压。此外,开放式房屋窗户的已知区域用于根据相应的几何区域校准ELA。为了验证该方法,通过理论分析和小容器空间的实验,检验了几何泄漏面积与通过该方法获得的ELA之间的关系,并与其他方法进行了比较。在具有大量泄漏间隙的实际建筑中的单个房间中,例如内门周围的泄漏间隙,用间隙计测量的总泄漏面积为311.5 cm2,所提出的方法产生的值相同,证明了两者之间的良好一致性。该方法在一栋总建筑面积226.59 m2的36年历史美式住宅中进行了测试,其ELA为672 cm2, c值为2.96 cm2/m2。几何可测泄漏面积与采用该方法估算的泄漏面积吻合较好,证实了该方法的可靠性。此外,从实际房屋实验中测量到的ELA的c值为2.96 cm2/m2,属于住宅建筑的典型范围(110 cm2/m ${}^{{2}}\text{)}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信