The crystallinity gradients of MoS2 controlled by glycol to boost redox kinetics for stabilization of sodium-ion batteries

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Congyan Bai , Zhenggang Jia , Xuexi Zhang , Mingfang Qian , Hsu-Sheng Tsai , Lin Geng
{"title":"The crystallinity gradients of MoS2 controlled by glycol to boost redox kinetics for stabilization of sodium-ion batteries","authors":"Congyan Bai ,&nbsp;Zhenggang Jia ,&nbsp;Xuexi Zhang ,&nbsp;Mingfang Qian ,&nbsp;Hsu-Sheng Tsai ,&nbsp;Lin Geng","doi":"10.1016/j.mtnano.2025.100666","DOIUrl":null,"url":null,"abstract":"<div><div>Controlling the crystallinity and microstructure of electrode materials is crucial to enhancing the sodium storage performance. Transition metal dichalcogenides, because of their high theoretical capacity, hold great promise for sodium-ion batteries. However, fundamental challenges exist in limited active sites and rapid capacity fading of crystalline transition metal dichalcogenides electrode materials. In this work, the crystallinity and microstructure of the MoS<sub>2</sub>/rGO electrode materials are directly regulated by adjusting the volume of glycol in the solvent. It shows that the MoS<sub>2</sub>/rGO-60 % electrode with balanced crystallinity and microstructure demonstrates remarkable cycling stability (82.2 % after 500 cycles) and outstanding rate performance. Additionally, we investigate the phase transition mechanism of MoS<sub>2</sub>/rGO-60 % during cycling, and the transition from amorphous to crystalline is found. This discovery provides insights into the design of long-life and sustainable sodium-ion batteries.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"31 ","pages":"Article 100666"},"PeriodicalIF":8.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000975","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling the crystallinity and microstructure of electrode materials is crucial to enhancing the sodium storage performance. Transition metal dichalcogenides, because of their high theoretical capacity, hold great promise for sodium-ion batteries. However, fundamental challenges exist in limited active sites and rapid capacity fading of crystalline transition metal dichalcogenides electrode materials. In this work, the crystallinity and microstructure of the MoS2/rGO electrode materials are directly regulated by adjusting the volume of glycol in the solvent. It shows that the MoS2/rGO-60 % electrode with balanced crystallinity and microstructure demonstrates remarkable cycling stability (82.2 % after 500 cycles) and outstanding rate performance. Additionally, we investigate the phase transition mechanism of MoS2/rGO-60 % during cycling, and the transition from amorphous to crystalline is found. This discovery provides insights into the design of long-life and sustainable sodium-ion batteries.
乙二醇控制二硫化钼的结晶度梯度以提高氧化还原动力学以稳定钠离子电池
控制电极材料的结晶度和微观结构是提高电极储钠性能的关键。过渡金属二硫族化合物由于具有较高的理论容量,在钠离子电池中具有很大的应用前景。然而,晶体过渡金属二硫族化合物电极材料存在活性位点有限和容量衰减快的问题。在这项工作中,通过调节溶剂中乙二醇的体积直接调节MoS2/rGO电极材料的结晶度和微观结构。结果表明,结晶度和微观结构平衡的MoS2/ rgo - 60%电极具有良好的循环稳定性(循环500次后达到82.2%)和良好的倍率性能。此外,我们研究了MoS2/ rgo - 60%在循环过程中的相变机理,发现了从非晶到结晶的转变。这一发现为长寿命和可持续的钠离子电池的设计提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信