Broken but not beaten: Unraveling the biotransformation fate of Mn@PCN224 nanozymes and its influence on enzymatic activity and safety at the human placenta in vitro
Nikolaos Tagaras , Haihan Song , Giacomo Reina , Sandro Lehner , Vera M. Kissling , Alexander Gogos , Weijun Tong , Tina Buerki-Thurnherr
{"title":"Broken but not beaten: Unraveling the biotransformation fate of Mn@PCN224 nanozymes and its influence on enzymatic activity and safety at the human placenta in vitro","authors":"Nikolaos Tagaras , Haihan Song , Giacomo Reina , Sandro Lehner , Vera M. Kissling , Alexander Gogos , Weijun Tong , Tina Buerki-Thurnherr","doi":"10.1016/j.nantod.2025.102857","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic placental inflammation has been associated with severe pregnancy complications including miscarriage, stillbirth, premature delivery, intra-uterine growth restriction, and recurrence risk in future pregnancies. Treatments are essential, but current standard therapies for infections and inflammation often struggle with limited efficacy and potential side effects. Nanomaterials with enzyme-mimetic properties (nanozymes) have demonstrated impressive medical capabilities especially in inflammation treatment. Remarkably, single-atom nanozymes (SAzymes) including metal-organic frameworks (MOFs) have attracted considerable attention due to their superior substrate affinity and catalytic activity compared to conventional nanozymes. However, due to their high reactivity, nanozymes could undergo biotransformation in biological fluids and tissues, affecting their physicochemical properties and potentially compromising their therapeutic efficacy and safety. On this basis, we performed a systematic study on the chemical and structural biotransformation, catalytic activity and biological impact of a PCN224 MOF at the human placenta <em>in vitro</em>. We engineered a PCN224 MOF, composed of zirconium clusters (Zr<sub>6</sub>) and 4-carboxyphenyl-porphyrin (H<sub>2</sub>TCPP), further doping it with Mn (Mn@PCN224) to form Mn-TCPP complexes. These complexes mimic the natural Mn-superoxide dismutase (MnSOD), a crucial enzyme to detoxify cells from radical stress during inflammation. In biological media, Mn@PCN224 underwent rapid and substantial decomposition, leading to a significant release of Mn-TCPP complexes. Nonetheless, despite the observed biotransformation, the SOD activity was maintained, mostly by the free Mn-TCPP bearing the enzyme-like active center. We further revealed that Mn@PCN224 SAzymes and their biotransformation products did not compromise cell viability, barrier integrity and endocrine function in an <em>in vitro</em> human placenta co-culture model. The current findings provide crucial insights about the biotransformation mechanism of a MOF-based SAzyme and emphasize the importance of biostability assessment, in addition to efficacy and safety evaluation.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"65 ","pages":"Article 102857"},"PeriodicalIF":10.9000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225002294","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic placental inflammation has been associated with severe pregnancy complications including miscarriage, stillbirth, premature delivery, intra-uterine growth restriction, and recurrence risk in future pregnancies. Treatments are essential, but current standard therapies for infections and inflammation often struggle with limited efficacy and potential side effects. Nanomaterials with enzyme-mimetic properties (nanozymes) have demonstrated impressive medical capabilities especially in inflammation treatment. Remarkably, single-atom nanozymes (SAzymes) including metal-organic frameworks (MOFs) have attracted considerable attention due to their superior substrate affinity and catalytic activity compared to conventional nanozymes. However, due to their high reactivity, nanozymes could undergo biotransformation in biological fluids and tissues, affecting their physicochemical properties and potentially compromising their therapeutic efficacy and safety. On this basis, we performed a systematic study on the chemical and structural biotransformation, catalytic activity and biological impact of a PCN224 MOF at the human placenta in vitro. We engineered a PCN224 MOF, composed of zirconium clusters (Zr6) and 4-carboxyphenyl-porphyrin (H2TCPP), further doping it with Mn (Mn@PCN224) to form Mn-TCPP complexes. These complexes mimic the natural Mn-superoxide dismutase (MnSOD), a crucial enzyme to detoxify cells from radical stress during inflammation. In biological media, Mn@PCN224 underwent rapid and substantial decomposition, leading to a significant release of Mn-TCPP complexes. Nonetheless, despite the observed biotransformation, the SOD activity was maintained, mostly by the free Mn-TCPP bearing the enzyme-like active center. We further revealed that Mn@PCN224 SAzymes and their biotransformation products did not compromise cell viability, barrier integrity and endocrine function in an in vitro human placenta co-culture model. The current findings provide crucial insights about the biotransformation mechanism of a MOF-based SAzyme and emphasize the importance of biostability assessment, in addition to efficacy and safety evaluation.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.