Explainable artificial intelligence-driven model for ultrafine particle (PM0.1) prediction and explanation using meteorological variables

Q2 Environmental Science
Apaporn Tipsavak , Thanyabun Phutson , Thanathip Limna , Racha Dejchanchaiwong , Perapong Tekasakul , Kirttayoth Yeranee , Mallika Kliangkhlao , Bukhoree Sahoh
{"title":"Explainable artificial intelligence-driven model for ultrafine particle (PM0.1) prediction and explanation using meteorological variables","authors":"Apaporn Tipsavak ,&nbsp;Thanyabun Phutson ,&nbsp;Thanathip Limna ,&nbsp;Racha Dejchanchaiwong ,&nbsp;Perapong Tekasakul ,&nbsp;Kirttayoth Yeranee ,&nbsp;Mallika Kliangkhlao ,&nbsp;Bukhoree Sahoh","doi":"10.1016/j.envc.2025.101248","DOIUrl":null,"url":null,"abstract":"<div><div>PM<sub>0.1</sub>, an ultrafine urban air pollutant, poses significant health risks due to its ability to penetrate deep into the lungs, enter the bloodstream, and rapidly circulate throughout the human body, potentially causing severe respiratory diseases. Effective monitoring and explanation of PM<sub>0.1</sub> concentrations are essential for implementing targeted air quality management strategies. This research addresses these challenges through a novel soft computing framework that integrates multiple computational intelligence techniques for both accurate prediction and interpretation of PM<sub>0.1</sub> concentrations using meteorological variables. Our methodology employs boosting algorithms with hyperparameter optimization to develop the most effective predictive model. Validated using real-world urban air quality data from Southeast Asia, our framework demonstrates broad applicability for diverse urban environments. Performance evaluation using unseen data demonstrates that XGBoost with Bayesian optimization achieves superior results, with an <em>R<sup>2</sup></em> of 89 %, <em>Mean absolute error</em> (<em>MAE</em>) of 0.28 µg/m<sup>3</sup>, and <em>Root Mean Squared Error</em> (<em>RMSE)</em> of 0.38 µg/m<sup>3</sup>. By integrating SHAP (SHapley Additive exPlanations) with the XGBoost model, we provide global and individual explanations of the model's predictions, highlighting the relative importance of meteorological variables such as temperature, humidity, and wind speed. This hybrid soft computing approach enhances the model's practical utility for environmental decision-making. It sets a foundation for future intelligent environmental monitoring applications across diverse regions, offering a scalable solution for targeted urban air quality management that balances prediction accuracy with interpretability.</div></div>","PeriodicalId":34794,"journal":{"name":"Environmental Challenges","volume":"20 ","pages":"Article 101248"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Challenges","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667010025001672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

PM0.1, an ultrafine urban air pollutant, poses significant health risks due to its ability to penetrate deep into the lungs, enter the bloodstream, and rapidly circulate throughout the human body, potentially causing severe respiratory diseases. Effective monitoring and explanation of PM0.1 concentrations are essential for implementing targeted air quality management strategies. This research addresses these challenges through a novel soft computing framework that integrates multiple computational intelligence techniques for both accurate prediction and interpretation of PM0.1 concentrations using meteorological variables. Our methodology employs boosting algorithms with hyperparameter optimization to develop the most effective predictive model. Validated using real-world urban air quality data from Southeast Asia, our framework demonstrates broad applicability for diverse urban environments. Performance evaluation using unseen data demonstrates that XGBoost with Bayesian optimization achieves superior results, with an R2 of 89 %, Mean absolute error (MAE) of 0.28 µg/m3, and Root Mean Squared Error (RMSE) of 0.38 µg/m3. By integrating SHAP (SHapley Additive exPlanations) with the XGBoost model, we provide global and individual explanations of the model's predictions, highlighting the relative importance of meteorological variables such as temperature, humidity, and wind speed. This hybrid soft computing approach enhances the model's practical utility for environmental decision-making. It sets a foundation for future intelligent environmental monitoring applications across diverse regions, offering a scalable solution for targeted urban air quality management that balances prediction accuracy with interpretability.
可解释的人工智能驱动的超细颗粒物(PM0.1)预测模型及气象变量解释
PM0.1是一种超细城市空气污染物,由于其能够深入肺部,进入血液,并在整个人体中快速循环,可能导致严重的呼吸系统疾病,因此对健康构成重大风险。有效监测和解释PM0.1浓度对于实施有针对性的空气质量管理战略至关重要。本研究通过一个新颖的软计算框架解决了这些挑战,该框架集成了多种计算智能技术,可以利用气象变量准确预测和解释PM0.1浓度。我们的方法采用超参数优化的增强算法来开发最有效的预测模型。通过使用来自东南亚的真实城市空气质量数据进行验证,我们的框架证明了对不同城市环境的广泛适用性。使用未见数据进行的性能评估表明,采用贝叶斯优化的XGBoost取得了较好的结果,R2为89%,平均绝对误差(MAE)为0.28µg/m3,均方根误差(RMSE)为0.38µg/m3。通过将SHapley加性解释(SHapley Additive exPlanations)与XGBoost模型相结合,我们提供了模型预测的全局和个体解释,突出了温度、湿度和风速等气象变量的相对重要性。这种混合软计算方法提高了模型在环境决策中的实用性。它为未来不同地区的智能环境监测应用奠定了基础,为有针对性的城市空气质量管理提供了可扩展的解决方案,平衡了预测准确性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Challenges
Environmental Challenges Environmental Science-Environmental Engineering
CiteScore
8.00
自引率
0.00%
发文量
249
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信