Closeness spectra and structural uniqueness of special graph classes

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Qaisar Farhad, Mumtaz Hussain, Shou-Jun Xu
{"title":"Closeness spectra and structural uniqueness of special graph classes","authors":"Qaisar Farhad,&nbsp;Mumtaz Hussain,&nbsp;Shou-Jun Xu","doi":"10.1016/j.amc.2025.129666","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <em>G</em> with vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and edge set <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Let <span><math><mi>d</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> be the distance between vertices <em>u</em> and <em>v</em>. The closeness matrix of a graph <em>G</em> is a symmetric matrix, where each entry <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> is defined as <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>d</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></msup></math></span> for <span><math><mi>u</mi><mo>≠</mo><mi>v</mi></math></span>, and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, if <span><math><mi>u</mi><mo>=</mo><mi>v</mi></math></span>. In the present study, we investigate the closeness spectra of connected graphs and inquire whether specific graph classes may be distinguished by their closeness eigenvalues. We inspect the tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msub></math></span>, the path <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and the join graph <span><math><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo><mo>∨</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>4</mn></mrow></msub></mrow><mo>‾</mo></mover></math></span>. Applying careful spectral computation, we demonstrate that such graphs are uniquely specified by their closeness spectra. Additionally, we confirm that the tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msub></math></span> achieves the second-smallest closeness eigenvalue among trees of diameter 3. Our findings emphasize the importance of closeness matrices in spectral graph theory and lead to more clarity of the relationship between the structure of graphs and its spectrum.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"509 ","pages":"Article 129666"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003923","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph G with vertex set V(G) and edge set E(G). Let d(u,v) be the distance between vertices u and v. The closeness matrix of a graph G is a symmetric matrix, where each entry cG(u,v) is defined as cG(u,v)=2d(u,v) for uv, and cG(u,v)=0, if u=v. In the present study, we investigate the closeness spectra of connected graphs and inquire whether specific graph classes may be distinguished by their closeness eigenvalues. We inspect the tree T3,n3, the path Pn, the complete graph Kn, and the join graph (P1P3)Kn4. Applying careful spectral computation, we demonstrate that such graphs are uniquely specified by their closeness spectra. Additionally, we confirm that the tree T3,n3 achieves the second-smallest closeness eigenvalue among trees of diameter 3. Our findings emphasize the importance of closeness matrices in spectral graph theory and lead to more clarity of the relationship between the structure of graphs and its spectrum.
特殊图类的接近谱和结构唯一性
对于具有顶点集V(G)和边集E(G)的图G。设d(u,v)为顶点u与v之间的距离。图G的接近矩阵是一个对称矩阵,其中每个元素cG(u,v)定义为,当u≠v时,cG(u,v)=2 - d(u,v),当u=v时,cG(u,v)=0。在本研究中,我们研究了连通图的接近谱,并探讨了是否可以用它们的接近特征值来区分特定的图类。我们∨检查树T3,n−3,路径Pn,完全图Kn,和连接图(P1∪P3) Kn−4形式。通过仔细的谱计算,我们证明了这样的图是由它们的接近谱唯一指定的。此外,我们证实了树T3,n−3在直径为3的树中达到了第二小的接近特征值。我们的发现强调了接近矩阵在谱图理论中的重要性,并使图的结构和谱之间的关系更加清晰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信