{"title":"Closeness spectra and structural uniqueness of special graph classes","authors":"Qaisar Farhad, Mumtaz Hussain, Shou-Jun Xu","doi":"10.1016/j.amc.2025.129666","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <em>G</em> with vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and edge set <span><math><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. Let <span><math><mi>d</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> be the distance between vertices <em>u</em> and <em>v</em>. The closeness matrix of a graph <em>G</em> is a symmetric matrix, where each entry <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> is defined as <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>d</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></msup></math></span> for <span><math><mi>u</mi><mo>≠</mo><mi>v</mi></math></span>, and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, if <span><math><mi>u</mi><mo>=</mo><mi>v</mi></math></span>. In the present study, we investigate the closeness spectra of connected graphs and inquire whether specific graph classes may be distinguished by their closeness eigenvalues. We inspect the tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msub></math></span>, the path <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and the join graph <span><math><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo><mo>∨</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>4</mn></mrow></msub></mrow><mo>‾</mo></mover></math></span>. Applying careful spectral computation, we demonstrate that such graphs are uniquely specified by their closeness spectra. Additionally, we confirm that the tree <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msub></math></span> achieves the second-smallest closeness eigenvalue among trees of diameter 3. Our findings emphasize the importance of closeness matrices in spectral graph theory and lead to more clarity of the relationship between the structure of graphs and its spectrum.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"509 ","pages":"Article 129666"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325003923","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For a graph G with vertex set and edge set . Let be the distance between vertices u and v. The closeness matrix of a graph G is a symmetric matrix, where each entry is defined as for , and , if . In the present study, we investigate the closeness spectra of connected graphs and inquire whether specific graph classes may be distinguished by their closeness eigenvalues. We inspect the tree , the path , the complete graph , and the join graph . Applying careful spectral computation, we demonstrate that such graphs are uniquely specified by their closeness spectra. Additionally, we confirm that the tree achieves the second-smallest closeness eigenvalue among trees of diameter 3. Our findings emphasize the importance of closeness matrices in spectral graph theory and lead to more clarity of the relationship between the structure of graphs and its spectrum.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.