Constructing a finite tension domain wall in ϕ44

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Jarah Evslin , Hengyuan Guo , Hui Liu , Baiyang Zhang
{"title":"Constructing a finite tension domain wall in ϕ44","authors":"Jarah Evslin ,&nbsp;Hengyuan Guo ,&nbsp;Hui Liu ,&nbsp;Baiyang Zhang","doi":"10.1016/j.nuclphysb.2025.117054","DOIUrl":null,"url":null,"abstract":"<div><div>We have recently claimed that the domain wall in the 3+1 dimensional <span><math><msup><mrow><mi>ϕ</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> double-well model can be constructed as a squeezed, coherent state and that at one loop it has a finite tension given general, but unspecified, renormalization conditions. In the present note, we justify this claim by showing that the tadpole is finite and the infrared divergences cancel exactly. Also we carefully treat the renormalization of the normal ordering mass scale. Faddeev and Korepin have stressed that ultraviolet divergences cancel in the soliton sector if they cancel in the vacuum sector when the corresponding calculations are identical in the ultraviolet. We therefore renormalize the divergences in the vacuum sector using a Schrodinger picture prescription, which mirrors closely the analogous calculations in the domain wall sector.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1018 ","pages":"Article 117054"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325002639","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

We have recently claimed that the domain wall in the 3+1 dimensional ϕ4 double-well model can be constructed as a squeezed, coherent state and that at one loop it has a finite tension given general, but unspecified, renormalization conditions. In the present note, we justify this claim by showing that the tadpole is finite and the infrared divergences cancel exactly. Also we carefully treat the renormalization of the normal ordering mass scale. Faddeev and Korepin have stressed that ultraviolet divergences cancel in the soliton sector if they cancel in the vacuum sector when the corresponding calculations are identical in the ultraviolet. We therefore renormalize the divergences in the vacuum sector using a Schrodinger picture prescription, which mirrors closely the analogous calculations in the domain wall sector.
构建了一个有限张力域壁
我们最近声称,在3+1维的双阱模型中,域壁可以被构造为一个压缩的相干态,并且在一个环中,它具有给定一般但未指定的重整化条件的有限张力。在本注释中,我们通过证明蝌蚪是有限的和红外发散完全抵消来证明这一说法。此外,我们还仔细地处理了正序质量尺度的重整化问题。Faddeev和Korepin强调,如果在紫外线中相应的计算是相同的,那么紫外线发散在孤子扇区中也会抵消,如果它们在真空扇区中也会抵消。因此,我们使用薛定谔图像处方重新规范化真空扇区中的散度,这与畴壁扇区中的类似计算非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信