M. Rahiyab, I. Ul Haq, S.S. Ali, Z. Hussain, S. Ali, I. Khan, A. Iqbal
{"title":"Design of a new multi-epitope subunit vaccine to combat the EIA virus, targeting Pol, Gag, and Env proteins: In silico technique","authors":"M. Rahiyab, I. Ul Haq, S.S. Ali, Z. Hussain, S. Ali, I. Khan, A. Iqbal","doi":"10.1016/j.vacune.2025.500463","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Equine Infectious Anemia Virus (EIAV) is a lentivirus, a member of the Retroviridae, that affects horses and is distributed nearly everywhere in the world. It results in a chronic infection followed by recurrent fever episodes linked to viremia, thrombocytopenia, and symptoms of atrophy. An alternate way of preventing this disease is vaccination or immunization.</div></div><div><h3>Materials and methods</h3><div>Numerous immunoinformatics algorithms were applied to determine potential epitopes (CTL, HTL, and B-cells) from the three structural proteins (polyprotein, gag, and envelope).</div></div><div><h3>Results</h3><div>Based on the prior research, the 50S ribosomal subunit protein L7/L12 of <em>Mycobacterium tuberculosis</em> was added to the vaccine, including several linkers for connecting epitopes. After designing a multi-epitope subunit vaccine (MESV), the structure was validated by exploiting the ERRAT, Ramachandran plot, and the ProSa-web. The validated structure was docked with TLR3 and TLR8. The structure of the vaccine was submitted to GROMAX for the MD simulation. The results indicated stability and proper folding. Using a codon optimization technique, the vaccine's GC contents and CAI values were 50.84% and 0.99, respectively. The pET28a (+) vector demonstrated an appropriate expression of the vaccine. Finally, in immune simulation, TC and TH-cell populations, including high concentrations of IgG + IgM and IgG1 + IgG2 immunoglobulins, and different cytokines (e.g., IFN-g, IL-2, etc.) are consistent with natural immunity and also show quicker antigen elimination.</div></div><div><h3>Conclusion</h3><div>This new research will be helpful for upcoming experimental evaluations to validate the safety and antigenic potency of the constructed vaccine and, eventually, to treat diseases linked to the EIA virus.</div></div>","PeriodicalId":101272,"journal":{"name":"Vacunas (English Edition)","volume":"26 3","pages":"Article 500463"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacunas (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2445146025000548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Equine Infectious Anemia Virus (EIAV) is a lentivirus, a member of the Retroviridae, that affects horses and is distributed nearly everywhere in the world. It results in a chronic infection followed by recurrent fever episodes linked to viremia, thrombocytopenia, and symptoms of atrophy. An alternate way of preventing this disease is vaccination or immunization.
Materials and methods
Numerous immunoinformatics algorithms were applied to determine potential epitopes (CTL, HTL, and B-cells) from the three structural proteins (polyprotein, gag, and envelope).
Results
Based on the prior research, the 50S ribosomal subunit protein L7/L12 of Mycobacterium tuberculosis was added to the vaccine, including several linkers for connecting epitopes. After designing a multi-epitope subunit vaccine (MESV), the structure was validated by exploiting the ERRAT, Ramachandran plot, and the ProSa-web. The validated structure was docked with TLR3 and TLR8. The structure of the vaccine was submitted to GROMAX for the MD simulation. The results indicated stability and proper folding. Using a codon optimization technique, the vaccine's GC contents and CAI values were 50.84% and 0.99, respectively. The pET28a (+) vector demonstrated an appropriate expression of the vaccine. Finally, in immune simulation, TC and TH-cell populations, including high concentrations of IgG + IgM and IgG1 + IgG2 immunoglobulins, and different cytokines (e.g., IFN-g, IL-2, etc.) are consistent with natural immunity and also show quicker antigen elimination.
Conclusion
This new research will be helpful for upcoming experimental evaluations to validate the safety and antigenic potency of the constructed vaccine and, eventually, to treat diseases linked to the EIA virus.