Wilfredo Rondan , Antony Cristhian Gonzales-Alvarado , Glêyce de Oliveira Ferreira , Nathalia de Setta , Ana Champi
{"title":"Effects of graphene-derived nanomaterials on the early development of the C4 Poaceae Setaria italica","authors":"Wilfredo Rondan , Antony Cristhian Gonzales-Alvarado , Glêyce de Oliveira Ferreira , Nathalia de Setta , Ana Champi","doi":"10.1016/j.plana.2025.100180","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for sustainable agricultural solutions has driven the exploration of advanced graphene-derived nanomaterials (GDNs). This study evaluated the effects of graphite (Gr), multilayer graphene (MLG), and graphene oxide (GO) on the early performance of the C4 Poaceae model species <em>Setaria italica</em>. GDNs were synthesized and characterized using Raman spectroscopy, atomic force microscopy, zeta potential, and UV-Vis analysis to identify the presence of structural defects, functional -OH groups and thiol (-SH) groups, as part of the study of their physicochemical properties. To investigate the impact of graphene-derived nanomaterials on <em>S. italica</em> agronomic traits, we performed experiments using Gr, MLG, and GO as soil amendments. Plants were cultivated on four concentrations of Gr, MLG, and GO, and maintained at field capacity for 25 days. We then assessed germination and agronomic traits to evaluate the response of seedlings to these treatments. Principal component analysis and correlation matrices were performed to obtain an integrated profile of the responses to treatment with GDNs. Our results showed that GDNs treatments did not significantly affect the germination profile of <em>S. italica</em> in an agronomic context. On the other hand, root length and total height were improved with MLG and GO treatments, while stem height was increased in the Gr treatment. The presence of thiol and -OH functional groups at the edges or between layers of GO and MLG can be related to plant growth performance, highlighting the potential of GDNs as agricultural nanomaterials to enhance crop productivity and stress resilience, emphasizing the need to optimize material properties and dosages for targeted applications in precision agriculture.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"13 ","pages":"Article 100180"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111125000476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The growing demand for sustainable agricultural solutions has driven the exploration of advanced graphene-derived nanomaterials (GDNs). This study evaluated the effects of graphite (Gr), multilayer graphene (MLG), and graphene oxide (GO) on the early performance of the C4 Poaceae model species Setaria italica. GDNs were synthesized and characterized using Raman spectroscopy, atomic force microscopy, zeta potential, and UV-Vis analysis to identify the presence of structural defects, functional -OH groups and thiol (-SH) groups, as part of the study of their physicochemical properties. To investigate the impact of graphene-derived nanomaterials on S. italica agronomic traits, we performed experiments using Gr, MLG, and GO as soil amendments. Plants were cultivated on four concentrations of Gr, MLG, and GO, and maintained at field capacity for 25 days. We then assessed germination and agronomic traits to evaluate the response of seedlings to these treatments. Principal component analysis and correlation matrices were performed to obtain an integrated profile of the responses to treatment with GDNs. Our results showed that GDNs treatments did not significantly affect the germination profile of S. italica in an agronomic context. On the other hand, root length and total height were improved with MLG and GO treatments, while stem height was increased in the Gr treatment. The presence of thiol and -OH functional groups at the edges or between layers of GO and MLG can be related to plant growth performance, highlighting the potential of GDNs as agricultural nanomaterials to enhance crop productivity and stress resilience, emphasizing the need to optimize material properties and dosages for targeted applications in precision agriculture.