mGFD: A meshless generalized finite difference method

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Gerardo Tinoco-Guerrero, Francisco Javier Domínguez-Mota, José Alberto Guzmán-Torres, Gabriela Pedraza-Jiménez, José Gerardo Tinoco-Ruiz
{"title":"mGFD: A meshless generalized finite difference method","authors":"Gerardo Tinoco-Guerrero,&nbsp;Francisco Javier Domínguez-Mota,&nbsp;José Alberto Guzmán-Torres,&nbsp;Gabriela Pedraza-Jiménez,&nbsp;José Gerardo Tinoco-Ruiz","doi":"10.1016/j.camwa.2025.07.034","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces a novel meshless method, the meshless Generalized Finite Difference (mGFD) scheme, which is derived from an optimization formulation that enforces the consistency condition. This approach eliminates the need for additional weight functions required by other methods, enabling efficient and accurate simulations of complex geometries. The method leverages a flexible, node-based discretization scheme that avoids a predefined mesh, providing enhanced versatility and adaptability in modeling various engineering applications. The proposed method's flexibility and adaptability are demonstrated through numerical solutions of elliptic, parabolic, and hyperbolic partial differential equations in highly irregular domains, providing satisfactory results compared to known exact solutions.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"195 ","pages":"Pages 396-418"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003232","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a novel meshless method, the meshless Generalized Finite Difference (mGFD) scheme, which is derived from an optimization formulation that enforces the consistency condition. This approach eliminates the need for additional weight functions required by other methods, enabling efficient and accurate simulations of complex geometries. The method leverages a flexible, node-based discretization scheme that avoids a predefined mesh, providing enhanced versatility and adaptability in modeling various engineering applications. The proposed method's flexibility and adaptability are demonstrated through numerical solutions of elliptic, parabolic, and hyperbolic partial differential equations in highly irregular domains, providing satisfactory results compared to known exact solutions.
一种无网格广义有限差分法
本文介绍了一种新的无网格方法,即无网格广义有限差分(mGFD)格式,该格式是从一个强制一致性条件的优化公式中导出的。这种方法消除了其他方法所需的额外权重函数的需要,从而实现了复杂几何形状的有效和准确模拟。该方法利用了一种灵活的、基于节点的离散化方案,避免了预定义的网格,为各种工程应用的建模提供了增强的通用性和适应性。通过求解高度不规则域的椭圆型、抛物型和双曲型偏微分方程的数值解,证明了该方法的灵活性和适应性,与已知的精确解相比,得到了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信