Enhancing Liquefied Natural Gas supply chain robustness through digital twin-driven machine learning models: A special case of cryogenic heat exchanger

IF 5.5 0 ENERGY & FUELS
Mariem Mhiri , Hajer Mkacher , Maryam Al-Khatib , Mohamed Kharbeche , Ahmed AlNouss , Mohamed Haouari
{"title":"Enhancing Liquefied Natural Gas supply chain robustness through digital twin-driven machine learning models: A special case of cryogenic heat exchanger","authors":"Mariem Mhiri ,&nbsp;Hajer Mkacher ,&nbsp;Maryam Al-Khatib ,&nbsp;Mohamed Kharbeche ,&nbsp;Ahmed AlNouss ,&nbsp;Mohamed Haouari","doi":"10.1016/j.jgsce.2025.205714","DOIUrl":null,"url":null,"abstract":"<div><div>The Liquefied Natural Gas (LNG) supply chain plays a critical role in the global energy sector but remains vulnerable to technical disruptions that compromise operational stability. Equipment failures pose significant risks, leading to production halts and quality degradation. This paper proposes a proof-of-concept resilience-enhancing framework to mitigate minor disruptions that, if left unaddressed, could escalate and impact LNG production continuity. Focusing on the Cryogenic Heat Exchanger (CHE) as a case study, an essential component of liquefaction, the framework integrates digital twins (DT), machine learning (ML), and predictive model to enable real-time monitoring, early failure detection, and proactive mitigation. First, randomly online simulated data on critical parameters (temperature, pressure, and flow rate) is collected using IoT sensors. Next, this data is processed through Aspen HYSYS-based and ML-driven DT to assess the system performance and predict potential failures, respectively. Finally, a Vector Autoregressive model is employed to forecast future operating conditions based on recent observations, capturing system dynamics and correlations. The resulting forecasts will feed the ML model to predict the next operational state. The framework is validated through an extensive computational study on randomly generated scenarios. The results demonstrate that the proposed system monitoring enhances LNG supply chain robustness, achieving early failure detection averaging 57.21% and significant downtime reduction reaching 31.57% on average compared to corrective maintenance strategies. These findings underscore the framework’s potential to improve operational efficiency and stability in LNG production, offering a scalable solution for supply chain robustness.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"143 ","pages":"Article 205714"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925001785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The Liquefied Natural Gas (LNG) supply chain plays a critical role in the global energy sector but remains vulnerable to technical disruptions that compromise operational stability. Equipment failures pose significant risks, leading to production halts and quality degradation. This paper proposes a proof-of-concept resilience-enhancing framework to mitigate minor disruptions that, if left unaddressed, could escalate and impact LNG production continuity. Focusing on the Cryogenic Heat Exchanger (CHE) as a case study, an essential component of liquefaction, the framework integrates digital twins (DT), machine learning (ML), and predictive model to enable real-time monitoring, early failure detection, and proactive mitigation. First, randomly online simulated data on critical parameters (temperature, pressure, and flow rate) is collected using IoT sensors. Next, this data is processed through Aspen HYSYS-based and ML-driven DT to assess the system performance and predict potential failures, respectively. Finally, a Vector Autoregressive model is employed to forecast future operating conditions based on recent observations, capturing system dynamics and correlations. The resulting forecasts will feed the ML model to predict the next operational state. The framework is validated through an extensive computational study on randomly generated scenarios. The results demonstrate that the proposed system monitoring enhances LNG supply chain robustness, achieving early failure detection averaging 57.21% and significant downtime reduction reaching 31.57% on average compared to corrective maintenance strategies. These findings underscore the framework’s potential to improve operational efficiency and stability in LNG production, offering a scalable solution for supply chain robustness.
通过数字双驱动机器学习模型增强液化天然气供应链稳健性:低温热交换器的特殊案例
液化天然气(LNG)供应链在全球能源领域发挥着至关重要的作用,但仍然容易受到影响运营稳定性的技术中断的影响。设备故障造成重大风险,导致生产停止和质量下降。本文提出了一个概念验证弹性增强框架,以减轻轻微的中断,如果不加以解决,可能会升级并影响液化天然气生产的连续性。该框架将低温热交换器(CHE)作为液化的重要组成部分进行案例研究,集成了数字孪生(DT)、机器学习(ML)和预测模型,以实现实时监控、早期故障检测和主动缓解。首先,使用物联网传感器收集关键参数(温度、压力和流量)的随机在线模拟数据。接下来,这些数据分别通过基于Aspen hysys和ml驱动的DT进行处理,以评估系统性能并预测潜在故障。最后,采用向量自回归模型根据最近的观测结果预测未来的运行状况,捕捉系统动力学和相关性。由此产生的预测将提供给ML模型来预测下一个操作状态。通过对随机生成的场景进行广泛的计算研究,验证了该框架。结果表明,与纠正性维护策略相比,所提出的系统监控增强了LNG供应链的鲁棒性,实现了平均57.21%的早期故障检测,平均31.57%的显著停机时间减少。这些发现强调了该框架在提高液化天然气生产的运营效率和稳定性方面的潜力,为供应链的稳健性提供了可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信