Design and Fabrication of Antireflective Coatings with Enhanced Transmittance and High Laser-Induced Damage Threshold for ZnGeP2 Mid-Infrared Crystals

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Liqin Liu, Hui Sun, Zhanglin Huang, Qiya Liu, Xiuying Gao, Yizhen Liu, Dingyu Yang and Tixian Zeng*, 
{"title":"Design and Fabrication of Antireflective Coatings with Enhanced Transmittance and High Laser-Induced Damage Threshold for ZnGeP2 Mid-Infrared Crystals","authors":"Liqin Liu,&nbsp;Hui Sun,&nbsp;Zhanglin Huang,&nbsp;Qiya Liu,&nbsp;Xiuying Gao,&nbsp;Yizhen Liu,&nbsp;Dingyu Yang and Tixian Zeng*,&nbsp;","doi":"10.1021/acs.inorgchem.5c02291","DOIUrl":null,"url":null,"abstract":"<p >Zinc germanium phosphide (ZnGeP<sub>2</sub>, ZGP), a key mid-infrared nonlinear crystal for optical parametric oscillation (OPO) applications, suffers from limited transmittance (∼60%) at pump (2090 nm) and generated (3600–4800 nm) wavelengths, hindering high-energy laser applications. This study overcomes this limitation by designing and experimentally validating highly effective antireflective coatings (ARCs) using Ta<sub>2</sub>O<sub>5</sub>/SiO<sub>2</sub> multilayers. An optimized Air|(1.44L/1.32H)|ZGP|(1.32H/1.44L)|Air structure exhibited three key improvements: (1) Simulated average transmittance &gt;99% across both bands; (2) Minimized electric field intensity at critical interfaces, enhancing the laser-induced damage threshold (LIDT); (3) The design exhibits excellent thickness tolerance, maintaining &gt;94% transmittance in the case of −45 nm to +50 nm film thickness variation, facilitating reliable fabrication via magnetron sputtering deposition. Fabricated coatings demonstrated outstanding performance: 97.0% transmittance at 2090 nm and 96.3% average across 3600–4800 nm─a ∼66% relative improvement over bare ZGP. Furthermore, under high-frequency laser irradiation conditions (16 kHz, 2090 nm), the LIDT of the coated sample reached at least 1.39 J/cm<sup>2</sup>, demonstrating robust durability in demanding operational environments. This ARC solution effectively addresses the critical limitations of ZGP crystals while maintaining compatibility with high-frequency laser operation requirements.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"64 31","pages":"16066–16072"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.5c02291","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc germanium phosphide (ZnGeP2, ZGP), a key mid-infrared nonlinear crystal for optical parametric oscillation (OPO) applications, suffers from limited transmittance (∼60%) at pump (2090 nm) and generated (3600–4800 nm) wavelengths, hindering high-energy laser applications. This study overcomes this limitation by designing and experimentally validating highly effective antireflective coatings (ARCs) using Ta2O5/SiO2 multilayers. An optimized Air|(1.44L/1.32H)|ZGP|(1.32H/1.44L)|Air structure exhibited three key improvements: (1) Simulated average transmittance >99% across both bands; (2) Minimized electric field intensity at critical interfaces, enhancing the laser-induced damage threshold (LIDT); (3) The design exhibits excellent thickness tolerance, maintaining >94% transmittance in the case of −45 nm to +50 nm film thickness variation, facilitating reliable fabrication via magnetron sputtering deposition. Fabricated coatings demonstrated outstanding performance: 97.0% transmittance at 2090 nm and 96.3% average across 3600–4800 nm─a ∼66% relative improvement over bare ZGP. Furthermore, under high-frequency laser irradiation conditions (16 kHz, 2090 nm), the LIDT of the coated sample reached at least 1.39 J/cm2, demonstrating robust durability in demanding operational environments. This ARC solution effectively addresses the critical limitations of ZGP crystals while maintaining compatibility with high-frequency laser operation requirements.

Abstract Image

ZnGeP2中红外晶体增透高激光损伤阈值增透涂层的设计与制备。
磷化锌锗(ZnGeP2, ZGP)是光学参量振荡(OPO)应用的关键中红外非线性晶体,在泵浦(2090 nm)和产生(3600-4800 nm)波长处具有有限的透射率(~ 60%),阻碍了高能激光的应用。本研究通过设计和实验验证了使用Ta2O5/SiO2多层膜的高效减反射涂层(arc),克服了这一限制。优化后的Air|(1.44L/1.32H)|ZGP|(1.32H/1.44L)|Air结构表现出三个关键改进:(1)两个波段的模拟平均透射率>99%;(2)降低关键界面处的电场强度,提高激光损伤阈值(LIDT);(3)该设计具有优异的厚度公差,在-45 nm至+50 nm的薄膜厚度变化情况下保持>94%的透光率,有利于磁控溅射沉积的可靠制造。制备的涂层表现出优异的性能:2090 nm的透光率为97.0%,3600-4800 nm的平均透光率为96.3%,比裸ZGP相对提高了66%。此外,在高频激光照射条件下(16 kHz, 2090 nm),涂层样品的LIDT至少达到1.39 J/cm2,在苛刻的操作环境中表现出强大的耐久性。这种ARC解决方案有效地解决了ZGP晶体的关键限制,同时保持了与高频激光操作要求的兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信