{"title":"A Hydrogen-fueled hybrid system based on HT-PEMFCs for simultaneous electrical power generation and high-value heat storage","authors":"Houcheng Zhang, Han Wang, Min Kuang, Yejian Xue","doi":"10.1515/jnet-2024-0122","DOIUrl":null,"url":null,"abstract":"High-temperature proton exchange membrane fuel cells (HT-PEMFCs) inherently produce waste heat, leading to component degradation, increased cooling demands, and reduced efficiency and longevity. To mitigate these challenges, this study introduces isopropanol-acetone-hydrogen chemical heat pumps (IAH-CHPs), selected for their proven ability to efficiently upgrade and store the waste heat from HT-PEMFCs in a high-value form. Grounded in thermodynamic and electrochemical principles, a comprehensive mathematical model, incorporating key irreversible losses, is developed to evaluate the potential. Numerical calculations predict a 29 % increase in the hybrid system’s maximum power density compared to a standalone HT-PEMFC operating at 443 K, along with corresponding enhancements of 14.17 % in energy efficiency and 14.16 % in exergy efficiency. Preliminary predictions confirm the feasibility of this approach, and the optimal operating ranges for maximizing power density are identified. Additionally, exhaustive parametric studies reveal the impacts of various structural and operational parameters – such as leakage current density, phosphoric acid doping, relative humidity, operating temperatures, and critical factors within the heat pump cycle – on the system’s thermodynamic performance and key current density indicators. Local sensitivity analyses highlight effective performance regulation strategies. These results provide essential insights for mitigating waste heat challenges, enhancing system efficiency, and extending the operational lifespan for HT-PEMFCs.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"1 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2024-0122","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) inherently produce waste heat, leading to component degradation, increased cooling demands, and reduced efficiency and longevity. To mitigate these challenges, this study introduces isopropanol-acetone-hydrogen chemical heat pumps (IAH-CHPs), selected for their proven ability to efficiently upgrade and store the waste heat from HT-PEMFCs in a high-value form. Grounded in thermodynamic and electrochemical principles, a comprehensive mathematical model, incorporating key irreversible losses, is developed to evaluate the potential. Numerical calculations predict a 29 % increase in the hybrid system’s maximum power density compared to a standalone HT-PEMFC operating at 443 K, along with corresponding enhancements of 14.17 % in energy efficiency and 14.16 % in exergy efficiency. Preliminary predictions confirm the feasibility of this approach, and the optimal operating ranges for maximizing power density are identified. Additionally, exhaustive parametric studies reveal the impacts of various structural and operational parameters – such as leakage current density, phosphoric acid doping, relative humidity, operating temperatures, and critical factors within the heat pump cycle – on the system’s thermodynamic performance and key current density indicators. Local sensitivity analyses highlight effective performance regulation strategies. These results provide essential insights for mitigating waste heat challenges, enhancing system efficiency, and extending the operational lifespan for HT-PEMFCs.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.