Jahangir Nobakht, André Pscherer, Jan Renger, Stephan Götzinger, Vahid Sandoghdar
{"title":"Hybridization of molecules via a common photonic mode","authors":"Jahangir Nobakht, André Pscherer, Jan Renger, Stephan Götzinger, Vahid Sandoghdar","doi":"10.1073/pnas.2505161122","DOIUrl":null,"url":null,"abstract":"Atoms and molecules usually hybridize and form bonds when they come in very close proximity of each other. In this work, we show that molecules can hybridize even through far-field electromagnetic interactions mediated by the shared mode of an optical microcavity. We discuss a collective enhancement of the vacuum Rabi splitting and study super- and subradiant states that arise from the cavity-mediated coupling both in the resonant and dispersive regimes. Moreover, we demonstrate a two-photon transition that emerges between the ground and excited states of the new optical compound. Our experimental data are in excellent agreement with the predictions of the Tavis–Cummings Hamiltonian and open the door to the realization of hybrid light–matter materials.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"52 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2505161122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Atoms and molecules usually hybridize and form bonds when they come in very close proximity of each other. In this work, we show that molecules can hybridize even through far-field electromagnetic interactions mediated by the shared mode of an optical microcavity. We discuss a collective enhancement of the vacuum Rabi splitting and study super- and subradiant states that arise from the cavity-mediated coupling both in the resonant and dispersive regimes. Moreover, we demonstrate a two-photon transition that emerges between the ground and excited states of the new optical compound. Our experimental data are in excellent agreement with the predictions of the Tavis–Cummings Hamiltonian and open the door to the realization of hybrid light–matter materials.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.