Phila Rembold, Santiago Beltrán-Romero, Alexander Preimesberger, Sergei Bogdanov, Isobel C Bicket, Nicolai Friis, Elizabeth Agudelo, Dennis Rätzel and Philipp Haslinger
{"title":"State-agnostic approach to certifying electron–photon entanglement in electron microscopy","authors":"Phila Rembold, Santiago Beltrán-Romero, Alexander Preimesberger, Sergei Bogdanov, Isobel C Bicket, Nicolai Friis, Elizabeth Agudelo, Dennis Rätzel and Philipp Haslinger","doi":"10.1088/2058-9565/adf004","DOIUrl":null,"url":null,"abstract":"Transmission electron microscopes (TEMs) enable atomic-scale imaging and characterisation, driving advances across fields from materials science to biology. Quantum correlations, specifically entanglement, may provide a basis for novel hybrid sensing techniques to make TEMs compatible with sensitive samples prone to radiation damage. We present a protocol to certify entanglement between electrons and photons naturally arising from certain coherent cathodoluminescence processes. Using mutually unbiased bases in position and momentum, our method allows robust, state-agnostic entanglement verification and provides a lower bound on the entanglement of formation, enabling quantitative comparisons across platforms. Simulations under experiment-inspired conditions and preliminary experimental data highlight the feasibility of implementing this approach in modern TEM systems with optical specimen access. Our work integrates photonic quantum information techniques with electron microscopy. It establishes a foundation for entanglement-based imaging at the atomic scale, offering a potential pathway to reduce radiation exposure.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"14 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adf004","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transmission electron microscopes (TEMs) enable atomic-scale imaging and characterisation, driving advances across fields from materials science to biology. Quantum correlations, specifically entanglement, may provide a basis for novel hybrid sensing techniques to make TEMs compatible with sensitive samples prone to radiation damage. We present a protocol to certify entanglement between electrons and photons naturally arising from certain coherent cathodoluminescence processes. Using mutually unbiased bases in position and momentum, our method allows robust, state-agnostic entanglement verification and provides a lower bound on the entanglement of formation, enabling quantitative comparisons across platforms. Simulations under experiment-inspired conditions and preliminary experimental data highlight the feasibility of implementing this approach in modern TEM systems with optical specimen access. Our work integrates photonic quantum information techniques with electron microscopy. It establishes a foundation for entanglement-based imaging at the atomic scale, offering a potential pathway to reduce radiation exposure.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.