P‐Doped NiCo2S4/CoZn‐LDH Layered Heterostructures: Synergistically Improved Conductivity and Enhanced OH− Adsorption for High‐Performance Asymmetric Supercapacitors

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-07-31 DOI:10.1002/smll.202504172
Ziyang Liu, Wenqiang Sun, Yingjie Li, Bona Zhang, Chenyong Wang, Xingjia Liu, Yulan Meng, Lizhao Liu, Xue‐Zhi Song, Xiaofeng Wang, Zhenquan Tan
{"title":"P‐Doped NiCo2S4/CoZn‐LDH Layered Heterostructures: Synergistically Improved Conductivity and Enhanced OH− Adsorption for High‐Performance Asymmetric Supercapacitors","authors":"Ziyang Liu, Wenqiang Sun, Yingjie Li, Bona Zhang, Chenyong Wang, Xingjia Liu, Yulan Meng, Lizhao Liu, Xue‐Zhi Song, Xiaofeng Wang, Zhenquan Tan","doi":"10.1002/smll.202504172","DOIUrl":null,"url":null,"abstract":"Doping induces lattice distortion and modifies the electronic structure of materials, thereby enhancing their electrical conductivity and chemical stability. The built‐in electric field at heterojunction interfaces further promotes charge carrier migration and improves surface reaction kinetics. To leverage these synergistic effects, this study employs a combined approach involving sulfidation, phosphidation, and electrodeposition to achieve P‐doping and construct a heterojunction layered structure. Specifically, P‐doping is implemented through a phosphorization treatment of NiCo<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> grown on nickel foam, followed by the electrodeposition of CoZn‐layered double hydroxide (LDH) onto the honeycomb‐like NiCo<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> substrate. Density Functional Theory calculations demonstrate that this unique structural design markedly enhances the composite's electrical conductivity and optimizes the adsorption energy of OH<jats:sup>−</jats:sup> ions, leading to significantly improved ion/electron reaction kinetics. The resulting P‐NiCo<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub>@CoZn‐LDH electrode exhibits a high areal capacitance of 15.00 F cm<jats:sup>−2</jats:sup> at a current density of 5 mA cm<jats:sup>−2</jats:sup>. When assembled into an asymmetric supercapacitor (P‐NiCo<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub>@CoZn‐LDH//activated carbon (AC)), the device achieves an energy density of 53.75 Wh kg<jats:sup>−1</jats:sup> at a power density of 205.76 W kg<jats:sup>−1</jats:sup>, while maintaining 77.36% capacitance retention after 10 000 cycles. These findings highlight the synergistic benefits of doping and heterojunction engineering in enhancing charge transport and ion adsorption capabilities, offering a promising strategy for developing high‐performance supercapacitors.","PeriodicalId":228,"journal":{"name":"Small","volume":"5 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202504172","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Doping induces lattice distortion and modifies the electronic structure of materials, thereby enhancing their electrical conductivity and chemical stability. The built‐in electric field at heterojunction interfaces further promotes charge carrier migration and improves surface reaction kinetics. To leverage these synergistic effects, this study employs a combined approach involving sulfidation, phosphidation, and electrodeposition to achieve P‐doping and construct a heterojunction layered structure. Specifically, P‐doping is implemented through a phosphorization treatment of NiCo2S4 grown on nickel foam, followed by the electrodeposition of CoZn‐layered double hydroxide (LDH) onto the honeycomb‐like NiCo2S4 substrate. Density Functional Theory calculations demonstrate that this unique structural design markedly enhances the composite's electrical conductivity and optimizes the adsorption energy of OH ions, leading to significantly improved ion/electron reaction kinetics. The resulting P‐NiCo2S4@CoZn‐LDH electrode exhibits a high areal capacitance of 15.00 F cm−2 at a current density of 5 mA cm−2. When assembled into an asymmetric supercapacitor (P‐NiCo2S4@CoZn‐LDH//activated carbon (AC)), the device achieves an energy density of 53.75 Wh kg−1 at a power density of 205.76 W kg−1, while maintaining 77.36% capacitance retention after 10 000 cycles. These findings highlight the synergistic benefits of doping and heterojunction engineering in enhancing charge transport and ion adsorption capabilities, offering a promising strategy for developing high‐performance supercapacitors.
P掺杂NiCo2S4/CoZn - LDH层状异质结构:协同改善高性能非对称超级电容器的电导率和增强OH -吸附
掺杂引起晶格畸变,改变材料的电子结构,从而提高材料的导电性和化学稳定性。异质结界面处的内建电场进一步促进了载流子迁移并改善了表面反应动力学。为了利用这些协同效应,本研究采用了包括硫化、磷化和电沉积在内的综合方法来实现P掺杂并构建异质结层状结构。具体来说,P掺杂是通过对泡沫镍上生长的NiCo2S4进行磷化处理,然后在蜂窝状NiCo2S4衬底上电沉积CoZn层状双氢氧化物(LDH)来实现的。密度泛函理论计算表明,这种独特的结构设计显著提高了复合材料的导电性,优化了OH -离子的吸附能,从而显著改善了离子/电子反应动力学。所得P‐NiCo2S4@CoZn‐LDH电极在电流密度为5 mA cm−2时具有15.00 F cm−2的高面电容。当组装成不对称超级电容器(P‐NiCo2S4@CoZn‐LDH//活性炭(AC))时,该器件在205.76 W kg−1的功率密度下实现了53.75 Wh kg−1的能量密度,在10,000次循环后保持了77.36%的电容保持率。这些发现突出了掺杂和异质结工程在增强电荷传输和离子吸附能力方面的协同效益,为开发高性能超级电容器提供了一个有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信