Bio-inspired acoustic metamaterials for traffic noise control: bridging the gap with machine learning.

Jia-Hao Lu, Siqi Ding, Yi-Qing Ni, Shu Li
{"title":"Bio-inspired acoustic metamaterials for traffic noise control: bridging the gap with machine learning.","authors":"Jia-Hao Lu, Siqi Ding, Yi-Qing Ni, Shu Li","doi":"10.1038/s44172-025-00470-x","DOIUrl":null,"url":null,"abstract":"<p><p>Acoustic metamaterials (AMMs) represent a transformative approach to sound manipulation, capable of controlling acoustic waves in ways that are not possible with traditional materials. These materials, often inspired by biological structures, leverage complex geometries and innovative designs to enhance sound absorption and control. This review outlines the fundamentals of bio-inspired AMMs, discusses their design and performance characteristics, and highlights the challenges in translating these innovations into practical applications. We also explore the integration of machine learning (ML) techniques with bio-inspired design to optimize AMM for practical implementation. Finally, we propose future research directions aimed at developing broadband AMMs that effectively address the pressing issue of traffic noise, thereby enhancing the overall efficacy of noise control solutions.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"136"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307771/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00470-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustic metamaterials (AMMs) represent a transformative approach to sound manipulation, capable of controlling acoustic waves in ways that are not possible with traditional materials. These materials, often inspired by biological structures, leverage complex geometries and innovative designs to enhance sound absorption and control. This review outlines the fundamentals of bio-inspired AMMs, discusses their design and performance characteristics, and highlights the challenges in translating these innovations into practical applications. We also explore the integration of machine learning (ML) techniques with bio-inspired design to optimize AMM for practical implementation. Finally, we propose future research directions aimed at developing broadband AMMs that effectively address the pressing issue of traffic noise, thereby enhancing the overall efficacy of noise control solutions.

用于交通噪音控制的仿生声学超材料:用机器学习弥合差距。
声学超材料(AMMs)代表了一种变革性的声音操纵方法,能够以传统材料无法实现的方式控制声波。这些材料通常受到生物结构的启发,利用复杂的几何形状和创新的设计来增强吸声和控制。本文概述了仿生人工智能的基本原理,讨论了它们的设计和性能特点,并强调了将这些创新转化为实际应用所面临的挑战。我们还探索了机器学习(ML)技术与生物启发设计的集成,以优化AMM的实际实施。最后,我们提出了未来的研究方向,旨在开发有效解决交通噪声紧迫问题的宽带amm,从而提高噪声控制解决方案的整体效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信