Asma Motiwala, Joana Soldado-Magraner, Aaron P Batista, Matthew A Smith, Byron M Yu
{"title":"Brain-computer interfaces as a causal probe for scientific inquiry.","authors":"Asma Motiwala, Joana Soldado-Magraner, Aaron P Batista, Matthew A Smith, Byron M Yu","doi":"10.1016/j.tics.2025.06.017","DOIUrl":null,"url":null,"abstract":"<p><p>Establishing causal relationships between neural activity and brain function requires experimental perturbations of neural activity. Many existing perturbation methods modify activity by directly applying external signals to the brain. We review an alternative approach where brain-computer interfaces (BCIs) leverage volitional control of neural activity to manipulate and causally perturb it. We highlight the potential of BCIs to manipulate neural activity in ways that are flexible, accurate, and adhere to intrinsic biophysical and network-level constraints to investigate the consequences of configuring neural population activity in specified ways. We discuss the advantages and disadvantages of using BCIs as a perturbation tool compared with other perturbation methods and how BCIs can expand the scope of questions that can be addressed about brain function.</p>","PeriodicalId":49417,"journal":{"name":"Trends in Cognitive Sciences","volume":" ","pages":""},"PeriodicalIF":17.2000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12313151/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cognitive Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.tics.2025.06.017","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Establishing causal relationships between neural activity and brain function requires experimental perturbations of neural activity. Many existing perturbation methods modify activity by directly applying external signals to the brain. We review an alternative approach where brain-computer interfaces (BCIs) leverage volitional control of neural activity to manipulate and causally perturb it. We highlight the potential of BCIs to manipulate neural activity in ways that are flexible, accurate, and adhere to intrinsic biophysical and network-level constraints to investigate the consequences of configuring neural population activity in specified ways. We discuss the advantages and disadvantages of using BCIs as a perturbation tool compared with other perturbation methods and how BCIs can expand the scope of questions that can be addressed about brain function.
期刊介绍:
Essential reading for those working directly in the cognitive sciences or in related specialist areas, Trends in Cognitive Sciences provides an instant overview of current thinking for scientists, students and teachers who want to keep up with the latest developments in the cognitive sciences. The journal brings together research in psychology, artificial intelligence, linguistics, philosophy, computer science and neuroscience. Trends in Cognitive Sciences provides a platform for the interaction of these disciplines and the evolution of cognitive science as an independent field of study.