Spatiotemporal Characterisation of Key Cortical Developmental Markers in the Developing Ferret Brain.

IF 2 4区 医学 Q2 DEVELOPMENTAL BIOLOGY
Rylie-May Alexa Hickmott, Mikaela Barresi, Abdulhameed Bosakhar, Sebastian Quezada, Anita Quigley, David W Walker, Mary Tolcos
{"title":"Spatiotemporal Characterisation of Key Cortical Developmental Markers in the Developing Ferret Brain.","authors":"Rylie-May Alexa Hickmott, Mikaela Barresi, Abdulhameed Bosakhar, Sebastian Quezada, Anita Quigley, David W Walker, Mary Tolcos","doi":"10.1159/000547661","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The ferret is an important model for studying corticogenesis and cortical gyrification due to its small size, condensed cortical development timeline, and postnatal onset of gyrification. Its cortical progenitor and neuronal diversity closely resemble those of humans. However, detailed histological data across the rostrocaudal axis at critical embryonic and postnatal stages remain limited, particularly for recently identified progenitor subpopulations. This study aimed to comprehensively characterise the spatiotemporal expression of key progenitor and neuronal markers throughout the rostrocaudal axis of the developing ferret cortex at critical embryonic and postnatal ages. In doing so, the study sought to establish a foundational, descriptive atlas of neurodevelopmental marker expression across key time points and cortical regions and layers.</p><p><strong>Methods: </strong>Immunofluorescent labelling of key neural progenitor and neuronal markers was performed on coronal ferret brain sections at embryonic (E34, E38) and postnatal (P2, P5, P15, P25) ages. Markers included PAX6, SOX2, TBR2, HOPX, CPLX3, CTIP2, SATB2, TUJ1, and DCX. Semi-quantitative analyses described the spatiotemporal distribution of each marker within defined cortical compartments along the rostrocaudal axis.</p><p><strong>Results: </strong>Early radial glial markers PAX6 and SOX2 were abundant in the ventricular zone at embryonic stages, progressively declining postnatally as the subventricular zone (SVZ) expanded. Intermediate progenitor cells labelled by TBR2 showed high abundance in the SVZ prenatally, with a marked decrease after birth. HOPX identified outer radial glia populations exhibiting distinct temporal and spatial distributions, with increasing presence in the subplate (SP) and cortical plate during postnatal stages. CPLX3 expression emerged postnatally, delineating mature SP neurons with regionally patterned maturation. Deep- and superficial-layer neuronal markers CTIP2 and SATB2 displayed orderly laminar emergence, indicating progressive cortical layer formation. General neuronal markers TUJ1 and DCX highlighted the maturation and migration of post-mitotic neurons, with spatiotemporal gradients reflecting cortical differentiation across regions.</p><p><strong>Conclusion: </strong>This detailed profiling fills critical gaps in the ferret histological record and serves as a valuable resource for investigations into mammalian corticogenesis using the ferret model. Through the integration of semi-quantitative assessments and qualitative analysis, this dataset contributes to the ongoing development of a detailed atlas of ferret brain development. These findings are expected to enhance the utility of the ferret model in neurodevelopmental research, particularly in translational contexts involving human cortical malformations.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-21"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000547661","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The ferret is an important model for studying corticogenesis and cortical gyrification due to its small size, condensed cortical development timeline, and postnatal onset of gyrification. Its cortical progenitor and neuronal diversity closely resemble those of humans. However, detailed histological data across the rostrocaudal axis at critical embryonic and postnatal stages remain limited, particularly for recently identified progenitor subpopulations. This study aimed to comprehensively characterise the spatiotemporal expression of key progenitor and neuronal markers throughout the rostrocaudal axis of the developing ferret cortex at critical embryonic and postnatal ages. In doing so, the study sought to establish a foundational, descriptive atlas of neurodevelopmental marker expression across key time points and cortical regions and layers.

Methods: Immunofluorescent labelling of key neural progenitor and neuronal markers was performed on coronal ferret brain sections at embryonic (E34, E38) and postnatal (P2, P5, P15, P25) ages. Markers included PAX6, SOX2, TBR2, HOPX, CPLX3, CTIP2, SATB2, TUJ1, and DCX. Semi-quantitative analyses described the spatiotemporal distribution of each marker within defined cortical compartments along the rostrocaudal axis.

Results: Early radial glial markers PAX6 and SOX2 were abundant in the ventricular zone at embryonic stages, progressively declining postnatally as the subventricular zone (SVZ) expanded. Intermediate progenitor cells labelled by TBR2 showed high abundance in the SVZ prenatally, with a marked decrease after birth. HOPX identified outer radial glia populations exhibiting distinct temporal and spatial distributions, with increasing presence in the subplate (SP) and cortical plate during postnatal stages. CPLX3 expression emerged postnatally, delineating mature SP neurons with regionally patterned maturation. Deep- and superficial-layer neuronal markers CTIP2 and SATB2 displayed orderly laminar emergence, indicating progressive cortical layer formation. General neuronal markers TUJ1 and DCX highlighted the maturation and migration of post-mitotic neurons, with spatiotemporal gradients reflecting cortical differentiation across regions.

Conclusion: This detailed profiling fills critical gaps in the ferret histological record and serves as a valuable resource for investigations into mammalian corticogenesis using the ferret model. Through the integration of semi-quantitative assessments and qualitative analysis, this dataset contributes to the ongoing development of a detailed atlas of ferret brain development. These findings are expected to enhance the utility of the ferret model in neurodevelopmental research, particularly in translational contexts involving human cortical malformations.

发育中的雪貂大脑皮层关键发育标志物的时空特征。
雪貂体型小,皮质发育时间短,且在出生后才出现皮质回旋,是研究皮质发生和皮质回旋的重要模型。它的皮质祖细胞和神经元多样性与人类非常相似。然而,在胚胎和出生后的关键阶段,详细的背尾轴组织学数据仍然有限,特别是最近发现的祖细胞亚群。本研究旨在全面表征在胚胎和出生后关键年龄发育中的雪貂皮质的背尾轴上关键祖细胞和神经元标记物的时空表达。在此过程中,该研究试图建立一个跨关键时间点和皮层区域和层的神经发育标志物表达的基础描述性图谱。方法对胚胎(E34, E38)和出生后(P2, P5, P15, P25)年龄的雪貂冠状脑切片进行关键神经祖细胞和神经元标志物的免疫荧光标记。标记包括PAX6、SOX2、TBR2、HOPX、CPLX3、CTIP2、SATB2、TUJ1和DCX。半定量分析描述了每个标记在沿背尾轴确定的皮质区室内的时空分布。结果早期放射状胶质标记物PAX6和SOX2在胚胎期脑室区丰富,出生后随着脑室下区(SVZ)的扩大而逐渐减少。TBR2标记的中间祖细胞在出生前在SVZ中丰度较高,出生后明显减少。HOPX鉴定出具有不同时空分布的外放射状胶质细胞群,在出生后阶段,在亚板(SP)和皮质板中的存在增加。CPLX3的表达在出生后出现,描绘了成熟的SP神经元具有区域模式的成熟。深层和浅层神经元标记物CTIP2和SATB2呈有序层状出现,提示皮质层形成的进行性。一般神经元标记TUJ1和DCX突出了有丝分裂后神经元的成熟和迁移,其时空梯度反映了皮层在不同区域的分化。这种详细的分析填补了雪貂组织学记录的关键空白,并为利用雪貂模型研究哺乳动物皮质发生提供了宝贵的资源。通过半定量评估和定性分析的整合,该数据集有助于持续开发雪貂大脑发育的详细图谱。这些发现有望增强雪貂模型在神经发育研究中的效用,特别是在涉及人类皮质畸形的翻译背景下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental Neuroscience
Developmental Neuroscience 医学-发育生物学
CiteScore
4.00
自引率
3.40%
发文量
49
审稿时长
>12 weeks
期刊介绍: ''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信