Michael Gerndt, Mustafa Ispir, Isaac Nunez, Shajulin Benedict
{"title":"Energy-Aware Duty Cycle Management for Solar-Powered IoT Devices.","authors":"Michael Gerndt, Mustafa Ispir, Isaac Nunez, Shajulin Benedict","doi":"10.3390/s25144500","DOIUrl":null,"url":null,"abstract":"<p><p>IoT devices with sensors and actuators are frequently deployed in environments without access to the power grid. These devices are battery powered and might make use of energy harvesting if battery lifetime is too limited. This article focuses on automatically adapting the duty cycle frequency to the predicted available solar energy so that a continuous operation of IoT applications is guaranteed. The implementation is based on a low-cost solar control board that is integrated with the Serverless IoT Framework (SIF), which provides an event-based programming paradigm for microcontroller-based IoT devices. The paper presents a case study where the IoT device sleep time is pro-actively adapted to a predicted sequence of cloudy days to guarantee continuous operation.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 14","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300125/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25144500","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
IoT devices with sensors and actuators are frequently deployed in environments without access to the power grid. These devices are battery powered and might make use of energy harvesting if battery lifetime is too limited. This article focuses on automatically adapting the duty cycle frequency to the predicted available solar energy so that a continuous operation of IoT applications is guaranteed. The implementation is based on a low-cost solar control board that is integrated with the Serverless IoT Framework (SIF), which provides an event-based programming paradigm for microcontroller-based IoT devices. The paper presents a case study where the IoT device sleep time is pro-actively adapted to a predicted sequence of cloudy days to guarantee continuous operation.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.