Cheng Lin, Hao Chen, Jiawen Chen, Shaolong Gou, Yande Liu, Jun Hu
{"title":"Design of Heavy Agricultural Machinery Rail Transport System and Dynamic Performance Research on Tracks in Hilly Regions of Southern China.","authors":"Cheng Lin, Hao Chen, Jiawen Chen, Shaolong Gou, Yande Liu, Jun Hu","doi":"10.3390/s25144498","DOIUrl":null,"url":null,"abstract":"<p><p>To address the limitations of conventional single-track rail systems in challenging hilly and mountainous terrains, which are ill-suited for transporting heavy agricultural machinery, there is a critical need to develop a specialized the double-track rail transportation system optimized for orchard equipment. Recognizing this requirement, our research team designed and implemented a double-track rail transportation system. In this innovative system, the rail functions as the pivotal component, with its structural properties significantly impacting the machine's overall stability and operational performance. In this study, resistance strain gauges were employed to analyze the stress-strain distribution of the track under a full load of 750 kg, a critical factor in the system's design. To further investigate the structural performance of the double-track rail, the impact hammer method was utilized in conjunction with triaxial acceleration sensors to conduct experimental modal analysis (EMA) under actual support conditions. By integrating the Eigensystem Realization Algorithm (ERA), the first 20 natural modes and their corresponding parameters were successfully identified with high precision. A comparative analysis between finite element simulation results and experimental measurements was performed, revealing the double-track rail's inherent vibration characteristics under constrained modal conditions versus actual boundary constraints. These valuable findings serve as a theoretical foundation for the dynamic optimization of rail structures and the mitigation of resonance issues. The advancement of hilly and mountainous rail transportation systems holds significant promise for enhancing productivity and transportation efficiency in agricultural operations.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 14","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25144498","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To address the limitations of conventional single-track rail systems in challenging hilly and mountainous terrains, which are ill-suited for transporting heavy agricultural machinery, there is a critical need to develop a specialized the double-track rail transportation system optimized for orchard equipment. Recognizing this requirement, our research team designed and implemented a double-track rail transportation system. In this innovative system, the rail functions as the pivotal component, with its structural properties significantly impacting the machine's overall stability and operational performance. In this study, resistance strain gauges were employed to analyze the stress-strain distribution of the track under a full load of 750 kg, a critical factor in the system's design. To further investigate the structural performance of the double-track rail, the impact hammer method was utilized in conjunction with triaxial acceleration sensors to conduct experimental modal analysis (EMA) under actual support conditions. By integrating the Eigensystem Realization Algorithm (ERA), the first 20 natural modes and their corresponding parameters were successfully identified with high precision. A comparative analysis between finite element simulation results and experimental measurements was performed, revealing the double-track rail's inherent vibration characteristics under constrained modal conditions versus actual boundary constraints. These valuable findings serve as a theoretical foundation for the dynamic optimization of rail structures and the mitigation of resonance issues. The advancement of hilly and mountainous rail transportation systems holds significant promise for enhancing productivity and transportation efficiency in agricultural operations.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.