Teodora Sanislav, George D Mois, Sherali Zeadally, Silviu Folea, Tudor C Radoni, Ebtesam A Al-Suhaimi
{"title":"A Comprehensive Review on Sensor-Based Electronic Nose for Food Quality and Safety.","authors":"Teodora Sanislav, George D Mois, Sherali Zeadally, Silviu Folea, Tudor C Radoni, Ebtesam A Al-Suhaimi","doi":"10.3390/s25144437","DOIUrl":null,"url":null,"abstract":"<p><p>Food quality and safety are essential for ensuring public health, preventing foodborne illness, reducing food waste, maintaining consumer confidence, and supporting regulatory compliance and international trade. This has led to the emergence of many research works that focus on automating and streamlining the assessment of food quality. Electronic noses have become of paramount importance in this context. We analyze the current state of research in the development of electronic noses for food quality and safety. We examined research papers published in three different scientific databases in the last decade, leading to a comprehensive review of the field. Our review found that most of the efforts use portable, low-cost electronic noses, coupled with pattern recognition algorithms, for evaluating the quality levels in certain well-defined food classes, reaching accuracies exceeding 90% in most cases. Despite these encouraging results, key challenges remain, particularly in diversifying the sensor response across complex substances, improving odor differentiation, compensating for sensor drift, and ensuring real-world reliability. These limitations indicate that a complete device mimicking the flexibility and selectivity of the human olfactory system is not yet available. To address these gaps, our review recommends solutions such as the adoption of adaptive machine learning models to reduce calibration needs and enhance drift resilience and the implementation of standardized protocols for data acquisition and model validation. We introduce benchmark comparisons and a future roadmap for electronic noses that demonstrate their potential to evolve from controlled studies to scalable industrial applications. In doing so, this review aims not only to assess the state of the field but also to support its transition toward more robust, interpretable, and field-ready electronic nose technologies.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 14","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12301011/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25144437","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Food quality and safety are essential for ensuring public health, preventing foodborne illness, reducing food waste, maintaining consumer confidence, and supporting regulatory compliance and international trade. This has led to the emergence of many research works that focus on automating and streamlining the assessment of food quality. Electronic noses have become of paramount importance in this context. We analyze the current state of research in the development of electronic noses for food quality and safety. We examined research papers published in three different scientific databases in the last decade, leading to a comprehensive review of the field. Our review found that most of the efforts use portable, low-cost electronic noses, coupled with pattern recognition algorithms, for evaluating the quality levels in certain well-defined food classes, reaching accuracies exceeding 90% in most cases. Despite these encouraging results, key challenges remain, particularly in diversifying the sensor response across complex substances, improving odor differentiation, compensating for sensor drift, and ensuring real-world reliability. These limitations indicate that a complete device mimicking the flexibility and selectivity of the human olfactory system is not yet available. To address these gaps, our review recommends solutions such as the adoption of adaptive machine learning models to reduce calibration needs and enhance drift resilience and the implementation of standardized protocols for data acquisition and model validation. We introduce benchmark comparisons and a future roadmap for electronic noses that demonstrate their potential to evolve from controlled studies to scalable industrial applications. In doing so, this review aims not only to assess the state of the field but also to support its transition toward more robust, interpretable, and field-ready electronic nose technologies.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.