{"title":"An Analysis of the Design and Kinematic Characteristics of an Octopedic Land-Air Bionic Robot.","authors":"Jianwei Zhao, Jiaping Gao, Mingsong Bao, Hao Zhai, Xu Pei, Zheng Jiang","doi":"10.3390/s25144502","DOIUrl":null,"url":null,"abstract":"<p><p>The urgent need for complex terrain adaptability in industrial automation and disaster relief has highlighted the great potential of octopedal wheel-legged robots. However, their design complexity and motion control challenges must be addressed. In this study, an innovative design approach is employed to construct a highly adaptive robot architecture capable of intelligently adjusting the wheel-leg configuration to cope with changing environments. An advanced kinematic analysis and simulation techniques are combined with inverse kinematic algorithms and dynamic planning to achieve a typical 'Step-Wise Octopedal Dynamic Coordination Gait' and different gait planning and optimization. The effectiveness of the design and control strategy is verified through the construction of an experimental platform and field tests, significantly improving the robot's adaptability and mobility in complex terrain. Additionally, an optional integrated quadrotor module with a compact folding mechanism is incorporated, enabling the robot to overcome otherwise impassable obstacles via short-distance flight when ground locomotion is impaired. This achievement not only enriches the theory and methodology of the multi-legged robot design but also establishes a solid foundation for its widespread application in disaster rescue, exploration, and industrial automation.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 14","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25144502","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The urgent need for complex terrain adaptability in industrial automation and disaster relief has highlighted the great potential of octopedal wheel-legged robots. However, their design complexity and motion control challenges must be addressed. In this study, an innovative design approach is employed to construct a highly adaptive robot architecture capable of intelligently adjusting the wheel-leg configuration to cope with changing environments. An advanced kinematic analysis and simulation techniques are combined with inverse kinematic algorithms and dynamic planning to achieve a typical 'Step-Wise Octopedal Dynamic Coordination Gait' and different gait planning and optimization. The effectiveness of the design and control strategy is verified through the construction of an experimental platform and field tests, significantly improving the robot's adaptability and mobility in complex terrain. Additionally, an optional integrated quadrotor module with a compact folding mechanism is incorporated, enabling the robot to overcome otherwise impassable obstacles via short-distance flight when ground locomotion is impaired. This achievement not only enriches the theory and methodology of the multi-legged robot design but also establishes a solid foundation for its widespread application in disaster rescue, exploration, and industrial automation.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.