Machine Learning for Selecting High-Energy Phosphate Cathode Materials.

IF 10.7 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-07-29 eCollection Date: 2025-01-01 DOI:10.34133/research.0794
Yongchun Dang, Zechen Li, Yongchao Yu, Xiwei Bai, Li Wang, Xuelei Wang, Peng Liu, Chen Sun, Xunli Zhou, Zhenpo Wang, Yongjie Zhao, Xiangming He, Lei Li
{"title":"Machine Learning for Selecting High-Energy Phosphate Cathode Materials.","authors":"Yongchun Dang, Zechen Li, Yongchao Yu, Xiwei Bai, Li Wang, Xuelei Wang, Peng Liu, Chen Sun, Xunli Zhou, Zhenpo Wang, Yongjie Zhao, Xiangming He, Lei Li","doi":"10.34133/research.0794","DOIUrl":null,"url":null,"abstract":"<p><p>The limited energy density inherent in cathode materials remains a marked barrier to the widespread adoption of sodium-ion batteries. Despite considerable research efforts, the precise influence of atomic and crystalline configurations on energy density is not yet fully understood, creating a knowledge gap that hinders the rational design of advanced cathode materials. In this study, we propose a machine learning approach to systematically identify promising cathode materials with high energy densities. Our model highlights the critical roles of entropy and equivalent electronegativity, among other properties such as molecular mass, electron affinity, and average ionic radius. Based on these insights, we successfully synthesized Na<sub>3</sub>Mn<sub>0.5</sub>V<sub>0.5</sub>Ti<sub>0.5</sub>Zr<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> (NMVTZP) electrodes via a sol-gel method. The resulting electrodes exhibit an impressive reversible specific capacity of 148.27 mAh g<sup>-1</sup> at a 0.1-C rate, outperforming several previously reported cathode materials. Additionally, the NMVTZP electrodes demonstrate an average operating voltage of 3.14 V, an energy density of 465 Wh kg<sup>-1</sup>, and exceptional rate performance, retaining 90.20 mAh g<sup>-1</sup> at a 5-C rate. We anticipate that our machine learning approach will accelerate the development of high-performance materials and greatly contribute to the advancement of sodium-ion battery technology.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0794"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304885/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0794","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

The limited energy density inherent in cathode materials remains a marked barrier to the widespread adoption of sodium-ion batteries. Despite considerable research efforts, the precise influence of atomic and crystalline configurations on energy density is not yet fully understood, creating a knowledge gap that hinders the rational design of advanced cathode materials. In this study, we propose a machine learning approach to systematically identify promising cathode materials with high energy densities. Our model highlights the critical roles of entropy and equivalent electronegativity, among other properties such as molecular mass, electron affinity, and average ionic radius. Based on these insights, we successfully synthesized Na3Mn0.5V0.5Ti0.5Zr0.5(PO4)3 (NMVTZP) electrodes via a sol-gel method. The resulting electrodes exhibit an impressive reversible specific capacity of 148.27 mAh g-1 at a 0.1-C rate, outperforming several previously reported cathode materials. Additionally, the NMVTZP electrodes demonstrate an average operating voltage of 3.14 V, an energy density of 465 Wh kg-1, and exceptional rate performance, retaining 90.20 mAh g-1 at a 5-C rate. We anticipate that our machine learning approach will accelerate the development of high-performance materials and greatly contribute to the advancement of sodium-ion battery technology.

高能磷酸盐正极材料选择的机器学习。
阴极材料固有的有限能量密度仍然是钠离子电池广泛采用的一个显著障碍。尽管进行了大量的研究工作,但原子和晶体结构对能量密度的确切影响尚未完全了解,这造成了知识空白,阻碍了先进阴极材料的合理设计。在这项研究中,我们提出了一种机器学习方法来系统地识别具有高能量密度的有前途的正极材料。我们的模型强调了熵和等效电负性的关键作用,以及分子质量、电子亲和性和平均离子半径等其他属性。基于这些见解,我们成功地通过溶胶-凝胶法合成了Na3Mn0.5V0.5Ti0.5Zr0.5(PO4)3 (NMVTZP)电极。所得电极在0.1℃的速率下表现出令人印象深刻的148.27 mAh g-1的可逆比容量,优于之前报道的几种阴极材料。此外,NMVTZP电极的平均工作电压为3.14 V,能量密度为465 Wh kg-1,具有优异的倍率性能,在5℃倍率下保持90.20 mAh g-1。我们预计,我们的机器学习方法将加速高性能材料的开发,并极大地促进钠离子电池技术的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信