Sergio Mena, Fiona Coutts, Jana von Trott, Esin Ucur, Clara Vetter, René R Kahn, W Wolfgang Fleischhacker, John M Kane, Oliver D Howes, Rachel Upthegrove, Paris A Lalousis, Nikolaos Koutsouleris
{"title":"AI-based prediction of depression symptomatology in first-episode psychosis patients: insights from the EUFEST and RAISE-ETP clinical trials.","authors":"Sergio Mena, Fiona Coutts, Jana von Trott, Esin Ucur, Clara Vetter, René R Kahn, W Wolfgang Fleischhacker, John M Kane, Oliver D Howes, Rachel Upthegrove, Paris A Lalousis, Nikolaos Koutsouleris","doi":"10.1017/S0033291725100950","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Depressive symptoms are highly prevalent in first-episode psychosis (FEP) and worsen clinical outcomes. It is currently difficult to determine which patients will have persistent depressive symptoms based on a clinical assessment. We aimed to determine whether depressive symptoms and post-psychotic depressive episodes can be predicted from baseline clinical data, quality of life, and blood-based biomarkers, and to assess the geographical generalizability of these models.</p><p><strong>Methods: </strong>Two FEP trials were analyzed: European First-Episode Schizophrenia Trial (EUFEST) (<i>n</i> = 498; 2002-2006) and Recovery After an Initial Schizophrenia Episode Early Treatment Program (RAISE-ETP) (<i>n</i> = 404; 2010-2012). Participants included those aged 15-40 years, meeting Diagnostic and Statistical Manual of Mental Disorders IV criteria for schizophrenia spectrum disorders. We developed support vector regressors and classifiers to predict changes in depressive symptoms at 6 and 12 months and depressive episodes within the first 6 months. These models were trained in one sample and externally validated in another for geographical generalizability.</p><p><strong>Results: </strong>A total of 320 EUFEST and 234 RAISE-ETP participants were included (mean [SD] age: 25.93 [5.60] years, 56.56% male; 23.90 [5.27] years, 73.50% male). Models predicted changes in depressive symptoms at 6 months with balanced accuracy (BAC) of 66.26% (RAISE-ETP) and 75.09% (EUFEST), and at 12 months with BAC of 67.88% (RAISE-ETP) and 77.61% (EUFEST). Depressive episodes were predicted with BAC of 66.67% (RAISE-ETP) and 69.01% (EUFEST), showing fair external predictive performance.</p><p><strong>Conclusions: </strong>Predictive models using clinical data, quality of life, and biomarkers accurately forecast depressive events in FEP, demonstrating generalization across populations.</p>","PeriodicalId":20891,"journal":{"name":"Psychological Medicine","volume":"55 ","pages":"e221"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341035/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0033291725100950","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Depressive symptoms are highly prevalent in first-episode psychosis (FEP) and worsen clinical outcomes. It is currently difficult to determine which patients will have persistent depressive symptoms based on a clinical assessment. We aimed to determine whether depressive symptoms and post-psychotic depressive episodes can be predicted from baseline clinical data, quality of life, and blood-based biomarkers, and to assess the geographical generalizability of these models.
Methods: Two FEP trials were analyzed: European First-Episode Schizophrenia Trial (EUFEST) (n = 498; 2002-2006) and Recovery After an Initial Schizophrenia Episode Early Treatment Program (RAISE-ETP) (n = 404; 2010-2012). Participants included those aged 15-40 years, meeting Diagnostic and Statistical Manual of Mental Disorders IV criteria for schizophrenia spectrum disorders. We developed support vector regressors and classifiers to predict changes in depressive symptoms at 6 and 12 months and depressive episodes within the first 6 months. These models were trained in one sample and externally validated in another for geographical generalizability.
Results: A total of 320 EUFEST and 234 RAISE-ETP participants were included (mean [SD] age: 25.93 [5.60] years, 56.56% male; 23.90 [5.27] years, 73.50% male). Models predicted changes in depressive symptoms at 6 months with balanced accuracy (BAC) of 66.26% (RAISE-ETP) and 75.09% (EUFEST), and at 12 months with BAC of 67.88% (RAISE-ETP) and 77.61% (EUFEST). Depressive episodes were predicted with BAC of 66.67% (RAISE-ETP) and 69.01% (EUFEST), showing fair external predictive performance.
Conclusions: Predictive models using clinical data, quality of life, and biomarkers accurately forecast depressive events in FEP, demonstrating generalization across populations.
期刊介绍:
Now in its fifth decade of publication, Psychological Medicine is a leading international journal in the fields of psychiatry, related aspects of psychology and basic sciences. From 2014, there are 16 issues a year, each featuring original articles reporting key research being undertaken worldwide, together with shorter editorials by distinguished scholars and an important book review section. The journal''s success is clearly demonstrated by a consistently high impact factor.