{"title":"Antifungal Nanocomposites from Honeybee Chitosan and Royal Jelly-Mediated Nanosilver for Suppressing Biofilm and Hyphal Formation of <i>Candida albicans</i>.","authors":"Mousa Abdullah Alghuthaymi","doi":"10.3390/polym17141916","DOIUrl":null,"url":null,"abstract":"<p><p><i>Candida albicans</i> complications challenged researchers and health overseers to discover effectual agents for suppressing such yeast growth, biofilm formation and conversion to hyphal form. The nanomaterials and their composites provided extraordinary bioactivities and functionalities as antimicrobial preparations. The extraction of chitosan (BCt) from honeybee corpuses was achieved as an innovative biopolymer for nanocomposite formation. The green (bio)synthesis of nanosilver (AgNPs) was promisingly performed using royal jelly (RJ) as a mediator of synthesis. The RJ-synthesized AgNPs had an average diameter of 3.61 nm and were negatively charged (-27.2 mV). The formulated nanocomposites from BCt/RJ/AgNPs at 2:1 (F1), 1:1 (F2), and 1:2 (F3) ratios had average diameters of 63.19, 27.65, and 52.74 nm, where their surface charges were +33.8, +29.3, and -11.5 mV, respectively. The infrared (FTIR) analysis designated molecules' interactions, whereas the transmission microscopy emphasized the homogenous distribution and impedance of AgNPs within the biopolymers' nanocomposites. Challenging <i>C. albicans</i> strains with nanomaterials/composites pinpointed their bioactivity for suppressing yeast growth and biofilm formation; the F2 nanocomposite exhibited superior actions, with the lowest inhibitory concentrations (MICs) of 125-175 mg/L, whereas the MIC ranges were 150-200 and 175-225 mg/L for F3 and F1, respectively. The different BCht/RJ/AgNP nanocomposites could entirely suppress the biofilm formation of all <i>C. albicans</i> strains. The scanning microscopy reflected the nanocomposite efficiency for <i>C. albicans</i> cell destruction and the complete suppression of hyphal formation. The application of generated BCht/RJ/AgNP nanocomposites is strongly recommended as they are effectual, natural and advanced materials for combating <i>C. albicans</i> pathogens.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 14","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12299515/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17141916","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Candida albicans complications challenged researchers and health overseers to discover effectual agents for suppressing such yeast growth, biofilm formation and conversion to hyphal form. The nanomaterials and their composites provided extraordinary bioactivities and functionalities as antimicrobial preparations. The extraction of chitosan (BCt) from honeybee corpuses was achieved as an innovative biopolymer for nanocomposite formation. The green (bio)synthesis of nanosilver (AgNPs) was promisingly performed using royal jelly (RJ) as a mediator of synthesis. The RJ-synthesized AgNPs had an average diameter of 3.61 nm and were negatively charged (-27.2 mV). The formulated nanocomposites from BCt/RJ/AgNPs at 2:1 (F1), 1:1 (F2), and 1:2 (F3) ratios had average diameters of 63.19, 27.65, and 52.74 nm, where their surface charges were +33.8, +29.3, and -11.5 mV, respectively. The infrared (FTIR) analysis designated molecules' interactions, whereas the transmission microscopy emphasized the homogenous distribution and impedance of AgNPs within the biopolymers' nanocomposites. Challenging C. albicans strains with nanomaterials/composites pinpointed their bioactivity for suppressing yeast growth and biofilm formation; the F2 nanocomposite exhibited superior actions, with the lowest inhibitory concentrations (MICs) of 125-175 mg/L, whereas the MIC ranges were 150-200 and 175-225 mg/L for F3 and F1, respectively. The different BCht/RJ/AgNP nanocomposites could entirely suppress the biofilm formation of all C. albicans strains. The scanning microscopy reflected the nanocomposite efficiency for C. albicans cell destruction and the complete suppression of hyphal formation. The application of generated BCht/RJ/AgNP nanocomposites is strongly recommended as they are effectual, natural and advanced materials for combating C. albicans pathogens.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.