Mustaqeem Ahmad, Ya-Huang Luo, Sonia Rathee, Robert A Spicer, Jian Zhang, Moses C Wambulwa, Guang-Fu Zhu, Marc W Cadotte, Zeng-Yuan Wu, Shujaul Mulk Khan, Debabrata Maity, De-Zhu Li, Jie Liu
{"title":"Multifaceted plant diversity patterns across the Himalaya: Status and outlook.","authors":"Mustaqeem Ahmad, Ya-Huang Luo, Sonia Rathee, Robert A Spicer, Jian Zhang, Moses C Wambulwa, Guang-Fu Zhu, Marc W Cadotte, Zeng-Yuan Wu, Shujaul Mulk Khan, Debabrata Maity, De-Zhu Li, Jie Liu","doi":"10.1016/j.pld.2025.04.003","DOIUrl":null,"url":null,"abstract":"<p><p>Mountains serve as exceptional natural laboratories for studying biodiversity due to their heterogeneous landforms and climatic zones. The Himalaya, a global biodiversity hotspot, hosts rich endemic flora, supports vital ecosystem functions, and offers a unique window into multifaceted plant diversity patterns. This review synthesizes research on Himalayan plant diversity, including species, phylogenetic, functional, and genetic dimensions, highlighting knowledge gaps and solutions. Research on Himalayan plant diversity has developed significantly. However, gaps remain, especially in studies on phylogenetic and functional diversity. The region's vegetation ranges from tropical rainforests to alpine ecosystems, with species richness typically following a hump-shaped distribution along elevation gradients. The eastern Himalaya exhibits higher plant diversity than the central and western regions. Low-elevation communities were found to be more functionally diverse, whereas high-elevation communities displayed greater ecological specialization. Communities at mid-elevations tend to show greater phylogenetic diversity than those at higher and lower elevations. The eastern and western flanks of the Himalaya retain high levels of genetic diversity and serve as glacial refugia, whereas the central region acts as a hybrid zone for closely related species. Himalayan plant diversity is shaped by historical, climatic, ecological and anthropogenic factors across space and time. However, this rich biodiversity is increasingly threatened by environmental change and growing anthropogenic pressures. Unfortunately, research efforts are constrained by spatial biases and the lack of transnational initiatives and collaborative studies, which could significantly benefit from interdisciplinary approaches, and other coordinated actions. These efforts are vital to safeguarding the Himalayan natural heritage.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 4","pages":"529-543"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302497/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2025.04.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mountains serve as exceptional natural laboratories for studying biodiversity due to their heterogeneous landforms and climatic zones. The Himalaya, a global biodiversity hotspot, hosts rich endemic flora, supports vital ecosystem functions, and offers a unique window into multifaceted plant diversity patterns. This review synthesizes research on Himalayan plant diversity, including species, phylogenetic, functional, and genetic dimensions, highlighting knowledge gaps and solutions. Research on Himalayan plant diversity has developed significantly. However, gaps remain, especially in studies on phylogenetic and functional diversity. The region's vegetation ranges from tropical rainforests to alpine ecosystems, with species richness typically following a hump-shaped distribution along elevation gradients. The eastern Himalaya exhibits higher plant diversity than the central and western regions. Low-elevation communities were found to be more functionally diverse, whereas high-elevation communities displayed greater ecological specialization. Communities at mid-elevations tend to show greater phylogenetic diversity than those at higher and lower elevations. The eastern and western flanks of the Himalaya retain high levels of genetic diversity and serve as glacial refugia, whereas the central region acts as a hybrid zone for closely related species. Himalayan plant diversity is shaped by historical, climatic, ecological and anthropogenic factors across space and time. However, this rich biodiversity is increasingly threatened by environmental change and growing anthropogenic pressures. Unfortunately, research efforts are constrained by spatial biases and the lack of transnational initiatives and collaborative studies, which could significantly benefit from interdisciplinary approaches, and other coordinated actions. These efforts are vital to safeguarding the Himalayan natural heritage.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry