Snapshot hyperspectral imaging with high spatial resolution based on transformers.

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-07-28 DOI:10.1364/OE.563614
Junpeng Zhu, Haitao Nie, Luyang Wang, Baixuan Zhao, Kaifeng Zheng, Yingze Zhao, Yupeng Chen, Weihong Ning, Peng Sun, Xudong Du, Siyao Ma, Yuxin Qin, Weibiao Wang, Jingqiu Liang, Jinguang Lv
{"title":"Snapshot hyperspectral imaging with high spatial resolution based on transformers.","authors":"Junpeng Zhu, Haitao Nie, Luyang Wang, Baixuan Zhao, Kaifeng Zheng, Yingze Zhao, Yupeng Chen, Weihong Ning, Peng Sun, Xudong Du, Siyao Ma, Yuxin Qin, Weibiao Wang, Jingqiu Liang, Jinguang Lv","doi":"10.1364/OE.563614","DOIUrl":null,"url":null,"abstract":"<p><p>Snapshot spectral imaging based on spectral response encoding has become a research focus due to its miniaturization and simple optical layout. Nevertheless, the limited pixel density of image sensors has become a technical bottleneck restricting spectral and spatial resolution. To address this problem, efficient spectral encoding methods and high-precision spectral reconstruction algorithms are crucial. In this study, we propose the theory of spectral information entropy transfer and find that the encoding loss of the target spectral cube's information entropy is the main factor restricting the spatial and spectral resolution of the reconstructed spectral cube. Based on this theory, we have developed the hyperspectral imaging transformers network (HSITNet), based on transformers. Compared to other models, HSITNet has a broader field of vision, effectively reducing the joint distribution information entropy of the spectral cube, and achieves higher spectral reconstruction quality. To fully explore the encoding performance, we introduce an algorithm to jointly optimize the encoding and decoding strategies. This mutual adaptation enhances the imaging quality of the spectral cube and enables the automatic design of encoding devices. In data experiments, we successfully reconstructed data cubes with 151 spectral channels, achieving pixel-level spatial resolution without mosaic. Reconstruction results show superior performance with metrics: MSE = 1.21 × 10<sup>-4</sup>, SAM = 0.041, PSNR = 39.72, and SSIM = 0.95, thereby realizing snapshot hyperspectral imaging with no spatial resolution degradation.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 15","pages":"31731-31755"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.563614","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Snapshot spectral imaging based on spectral response encoding has become a research focus due to its miniaturization and simple optical layout. Nevertheless, the limited pixel density of image sensors has become a technical bottleneck restricting spectral and spatial resolution. To address this problem, efficient spectral encoding methods and high-precision spectral reconstruction algorithms are crucial. In this study, we propose the theory of spectral information entropy transfer and find that the encoding loss of the target spectral cube's information entropy is the main factor restricting the spatial and spectral resolution of the reconstructed spectral cube. Based on this theory, we have developed the hyperspectral imaging transformers network (HSITNet), based on transformers. Compared to other models, HSITNet has a broader field of vision, effectively reducing the joint distribution information entropy of the spectral cube, and achieves higher spectral reconstruction quality. To fully explore the encoding performance, we introduce an algorithm to jointly optimize the encoding and decoding strategies. This mutual adaptation enhances the imaging quality of the spectral cube and enables the automatic design of encoding devices. In data experiments, we successfully reconstructed data cubes with 151 spectral channels, achieving pixel-level spatial resolution without mosaic. Reconstruction results show superior performance with metrics: MSE = 1.21 × 10-4, SAM = 0.041, PSNR = 39.72, and SSIM = 0.95, thereby realizing snapshot hyperspectral imaging with no spatial resolution degradation.

基于变压器的高空间分辨率快照高光谱成像。
基于谱响应编码的快照光谱成像以其小型化、光学布局简单等优点成为研究热点。然而,有限的图像传感器像素密度已经成为限制光谱和空间分辨率的技术瓶颈。为了解决这一问题,高效的光谱编码方法和高精度的光谱重建算法至关重要。本文提出了光谱信息熵转移理论,发现目标光谱立方体信息熵的编码损失是制约重构光谱立方体空间分辨率和光谱分辨率的主要因素。基于这一理论,我们开发了基于变压器的高光谱成像变压器网络(HSITNet)。与其他模型相比,HSITNet具有更广阔的视野,有效降低了光谱立方体的联合分布信息熵,实现了更高的光谱重建质量。为了充分挖掘编码性能,我们引入了一种联合优化编码和解码策略的算法。这种相互适应提高了光谱立方体的成像质量,实现了编码器件的自动设计。在数据实验中,我们成功地重建了151个光谱通道的数据立方体,实现了像素级的空间分辨率。重建结果显示,MSE = 1.21 × 10-4, SAM = 0.041, PSNR = 39.72, SSIM = 0.95,实现了无空间分辨率退化的快照高光谱成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信