Enhancing nonlinear compensation efficiency with multi-task neural networks for coherent optical systems.

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-07-28 DOI:10.1364/OE.563931
Tonghui Ji, Qi Wu, Zhaopeng Xu, Honglin Ji, Yu Yang, Gang Qiao, Lulu Liu, Shangcheng Wang, Zhongliang Sun, Junpeng Liang, Linsheng Fan, Jianwei Tang, Jinlong Wei, Juhao Li, Weisheng Hu
{"title":"Enhancing nonlinear compensation efficiency with multi-task neural networks for coherent optical systems.","authors":"Tonghui Ji, Qi Wu, Zhaopeng Xu, Honglin Ji, Yu Yang, Gang Qiao, Lulu Liu, Shangcheng Wang, Zhongliang Sun, Junpeng Liang, Linsheng Fan, Jianwei Tang, Jinlong Wei, Juhao Li, Weisheng Hu","doi":"10.1364/OE.563931","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional nonlinear compensation techniques often involve complex models that introduce significant computational overhead, particularly in high-speed, high-capacity optical communication systems. To address this challenge, we propose a low-complexity nonlinear compensation method based on a multi-task neural network (MT-NN), combined with a complexity-aware mean square error (MSE) and partial grid search optimization for coherent optical communication systems. The proposed framework exploits shared network weights to simultaneously process multiple symbols, thereby reducing redundant computations while maintaining compensation accuracy. Additionally, transfer learning (TL) is incorporated to further enhance training efficiency. Experimental results demonstrate that the MT-NN-based approach effectively lowers computational complexity across diverse optical transmission scenarios without compromising system performance. Compared to a conventional single-task neural network (ST-NN), our method achieves a superior trade-off between accuracy and efficiency. This work provides a promising solution for practical, low-complexity nonlinear compensation in next-generation optical communication systems.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 15","pages":"32417-32428"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.563931","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional nonlinear compensation techniques often involve complex models that introduce significant computational overhead, particularly in high-speed, high-capacity optical communication systems. To address this challenge, we propose a low-complexity nonlinear compensation method based on a multi-task neural network (MT-NN), combined with a complexity-aware mean square error (MSE) and partial grid search optimization for coherent optical communication systems. The proposed framework exploits shared network weights to simultaneously process multiple symbols, thereby reducing redundant computations while maintaining compensation accuracy. Additionally, transfer learning (TL) is incorporated to further enhance training efficiency. Experimental results demonstrate that the MT-NN-based approach effectively lowers computational complexity across diverse optical transmission scenarios without compromising system performance. Compared to a conventional single-task neural network (ST-NN), our method achieves a superior trade-off between accuracy and efficiency. This work provides a promising solution for practical, low-complexity nonlinear compensation in next-generation optical communication systems.

提高相干光学系统非线性补偿效率的多任务神经网络。
传统的非线性补偿技术通常涉及复杂的模型,引入了大量的计算开销,特别是在高速,高容量的光通信系统中。为了解决这一挑战,我们提出了一种基于多任务神经网络(MT-NN)的低复杂度非线性补偿方法,结合了复杂性感知均方误差(MSE)和部分网格搜索优化的相干光通信系统。该框架利用共享网络权重来同时处理多个符号,从而在保持补偿精度的同时减少冗余计算。并结合迁移学习(TL),进一步提高培训效率。实验结果表明,基于mt - nn的方法在不影响系统性能的情况下,有效地降低了不同光传输场景下的计算复杂度。与传统的单任务神经网络(ST-NN)相比,我们的方法在精度和效率之间取得了更好的平衡。这项工作为下一代光通信系统中实用、低复杂度的非线性补偿提供了一种有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信