Comparison of Ultrasound-Microwave-Assisted and Hot Reflux Extractions of Polysaccharides from Alpinia officinarum Hance: Optimization, Characterization, and Antioxidant Activity.

IF 4.6 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Haibao Tang, Baogang Zhou, Mengge Sun, Yihan Wang, Ran Cheng, Tao Tan, Dongsheng Yang
{"title":"Comparison of Ultrasound-Microwave-Assisted and Hot Reflux Extractions of Polysaccharides from <i>Alpinia officinarum</i> Hance: Optimization, Characterization, and Antioxidant Activity.","authors":"Haibao Tang, Baogang Zhou, Mengge Sun, Yihan Wang, Ran Cheng, Tao Tan, Dongsheng Yang","doi":"10.3390/molecules30143031","DOIUrl":null,"url":null,"abstract":"<p><p><i>Alpinia officinarum</i> Hance exhibits various bioactivities, with polysaccharides being one of its key bioactive components. However, the relationship between the structural characteristics of these polysaccharides and their bioactivities remains unclear and underexplored. In this study, to optimize the extraction process, a Response Surface Methodology-based design combined with single-factor experiments was applied to determine the optimal conditions for the ultrasonic-microwave-assisted extraction of polysaccharides from <i>A. officinarum</i>. The primary structural characteristics and antioxidant activities of two polysaccharide fractions, PAOR-1 extracted by ultrasonic-microwave-assisted extraction and PAOR-2 extracted by hot reflux extraction (HRE), were systematically compared. The optimal extraction conditions, including a liquid-solid ratio of 1:50, extraction time of 19 mins, and ultrasonic power of 410 W, yielded a maximum polysaccharide extraction rate of 18.28% ± 2.23%. The extracted polysaccharides were characterized as acidic polysaccharides with a three-dimensional structure. PAOR-1 and PAOR-2 have different monosaccharide compositions, surface morphologies, and thermal stabilities. The antioxidant activity in vitro studies suggest that PAOR-1 may have higher antioxidant activity than PAOR-2 due to its higher content of uronic acids, lower relative molecular mass, and a more closely packed spatial configuration. These findings provide a theoretical basis for the development and utilization of AOR.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 14","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12298646/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30143031","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alpinia officinarum Hance exhibits various bioactivities, with polysaccharides being one of its key bioactive components. However, the relationship between the structural characteristics of these polysaccharides and their bioactivities remains unclear and underexplored. In this study, to optimize the extraction process, a Response Surface Methodology-based design combined with single-factor experiments was applied to determine the optimal conditions for the ultrasonic-microwave-assisted extraction of polysaccharides from A. officinarum. The primary structural characteristics and antioxidant activities of two polysaccharide fractions, PAOR-1 extracted by ultrasonic-microwave-assisted extraction and PAOR-2 extracted by hot reflux extraction (HRE), were systematically compared. The optimal extraction conditions, including a liquid-solid ratio of 1:50, extraction time of 19 mins, and ultrasonic power of 410 W, yielded a maximum polysaccharide extraction rate of 18.28% ± 2.23%. The extracted polysaccharides were characterized as acidic polysaccharides with a three-dimensional structure. PAOR-1 and PAOR-2 have different monosaccharide compositions, surface morphologies, and thermal stabilities. The antioxidant activity in vitro studies suggest that PAOR-1 may have higher antioxidant activity than PAOR-2 due to its higher content of uronic acids, lower relative molecular mass, and a more closely packed spatial configuration. These findings provide a theoretical basis for the development and utilization of AOR.

超声微波辅助提取和热回流提取高山莲多糖的比较:优化、表征和抗氧化活性。
厚朴具有多种生物活性,多糖是其主要生物活性成分之一。然而,这些多糖的结构特征与其生物活性之间的关系尚不清楚,尚未得到充分的研究。为优化提取工艺,采用响应面法设计并结合单因素实验,确定超声-微波辅助提取牛蒡多糖的最佳工艺条件。对超声-微波辅助提取的PAOR-1和热回流提取的PAOR-2两种多糖组分的主要结构特征和抗氧化活性进行了系统比较。最佳提取条件为液料比1:50,提取时间19 min,超声功率410 W,多糖提取率最高为18.28%±2.23%。提取的多糖为酸性多糖,具有三维结构。PAOR-1和PAOR-2具有不同的单糖组成、表面形貌和热稳定性。体外抗氧化活性研究表明,PAOR-1可能具有比PAOR-2更高的抗氧化活性,这可能是由于其较高的醛酸含量、较低的相对分子质量和更紧密的排列空间构型。研究结果为AOR的开发利用提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信