Loss of dcst2 expression in male zebrafish is not associated with muscle hypertrophy.

IF 2.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
X Allard-Chamard, E C Rodríguez, B Brais, G A B Armstrong
{"title":"Loss of dcst2 expression in male zebrafish is not associated with muscle hypertrophy.","authors":"X Allard-Chamard, E C Rodríguez, B Brais, G A B Armstrong","doi":"10.1007/s00438-025-02279-x","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, a large family of French-Canadians was found to possess above-average strength and muscle hypertrophy that segregated with a single variant in the gene encoding Dendritic Cell-specific Six Transmembrane domain containing protein 2 (DCST2). To investigate the potential role DCST2 has in muscle cell biology we used the CRISPR/Cas9 mutagenic system and generated a 2-nucleotide deletion in exon 3 of zebrafish dcst2 resulting in a frameshift mutation. Homozygous carriers of the mutation displayed reduced transcriptional expression of dcst2 suggesting that our mutation disrupted gene expression. Homozygous mutant dcst2 zebrafish developed normally to adulthood and displayed no differences in motor function using a free-swim and swim tunnel assays. Furthermore, histological examination of muscle cells revealed no differences in slow-twitch or fast-twitch muscle cell cross-sectional area in our mutants. We did observe that male dcst2<sup>-/-</sup> zebrafish were infertile. The data collected here, suggest that dcst2 does not play a role in zebrafish muscle cell biology.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"74"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-025-02279-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, a large family of French-Canadians was found to possess above-average strength and muscle hypertrophy that segregated with a single variant in the gene encoding Dendritic Cell-specific Six Transmembrane domain containing protein 2 (DCST2). To investigate the potential role DCST2 has in muscle cell biology we used the CRISPR/Cas9 mutagenic system and generated a 2-nucleotide deletion in exon 3 of zebrafish dcst2 resulting in a frameshift mutation. Homozygous carriers of the mutation displayed reduced transcriptional expression of dcst2 suggesting that our mutation disrupted gene expression. Homozygous mutant dcst2 zebrafish developed normally to adulthood and displayed no differences in motor function using a free-swim and swim tunnel assays. Furthermore, histological examination of muscle cells revealed no differences in slow-twitch or fast-twitch muscle cell cross-sectional area in our mutants. We did observe that male dcst2-/- zebrafish were infertile. The data collected here, suggest that dcst2 does not play a role in zebrafish muscle cell biology.

雄性斑马鱼中dcst2表达的缺失与肌肉肥大无关。
最近,一个法裔加拿大大家族被发现具有高于平均水平的力量和肌肉肥大,分离出编码树突状细胞特异性六跨膜结构域蛋白2 (DCST2)基因的单一变异。为了研究DCST2在肌肉细胞生物学中的潜在作用,我们使用CRISPR/Cas9诱变系统,在斑马鱼DCST2的外显子3上产生2个核苷酸的缺失,导致移码突变。该突变的纯合子携带者显示dcst2的转录表达减少,这表明我们的突变破坏了基因表达。纯合子突变体dcst2斑马鱼正常发育至成年,在自由游泳和游泳隧道试验中没有表现出运动功能的差异。此外,肌肉细胞的组织学检查显示,在我们的突变体中,慢速抽搐和快速抽搐的肌肉细胞横截面积没有差异。我们确实观察到雄性dcst2-/-斑马鱼是不育的。这里收集的数据表明,dcst2在斑马鱼肌肉细胞生物学中不起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Genetics and Genomics
Molecular Genetics and Genomics 生物-生化与分子生物学
CiteScore
5.10
自引率
3.20%
发文量
134
审稿时长
1 months
期刊介绍: Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology. The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信