Kaida Cai, Jing Xiao, Xingwei Su, Qiuhui Tang, Huayuan Deng
{"title":"Encapsulation Process and Dynamic Characterization of SiC Half-Bridge Power Module: Electro-Thermal Co-Design and Experimental Validation.","authors":"Kaida Cai, Jing Xiao, Xingwei Su, Qiuhui Tang, Huayuan Deng","doi":"10.3390/mi16070824","DOIUrl":null,"url":null,"abstract":"<p><p>Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of \"design-simulation-process-validation\". This approach integrates in-depth electro-thermal simulation (LTspice XVII/COMSOL Multiphysics 6.3) with micro/nano-packaging processes (sintering/bonding). Firstly, a multifunctional double-pulse test board was designed for the dynamic characterization of SiC devices. LTspice simulations revealed the switching characteristics under an 800 V operating condition. Subsequently, a thermal simulation model was constructed in COMSOL to quantify the module junction temperature gradient (25 °C → 80 °C). Key process parameters affecting reliability were then quantified, including conductive adhesive sintering (S820-F680, 39.3 W/m·K), high-temperature baking at 175 °C, and aluminum wire bonding (15 mil wire diameter and 500 mW ultrasonic power/500 g bonding force). Finally, a double-pulse dynamic test platform was established to capture switching transient characteristics. Experimental results demonstrated the following: (1) The packaged module successfully passed the 800 V high-voltage validation. Measured drain current (4.62 A) exhibited an error of <0.65% compared to the simulated value (4.65 A). (2) The simulated junction temperature (80 °C) was significantly below the safety threshold (175 °C). (3) Microscopic examination using a Leica IVesta 3 microscope (55× magnification) confirmed the absence of voids at the sintering and bonding interfaces. (4) Frequency-dependent dynamic characterization revealed a 6 nH parasitic inductance via Ansys Q3D 2025 R1 simulation, with experimental validation at 8.3 nH through double-pulse testing. Thermal evaluations up to 200 kHz indicated 109 °C peak temperature (below 175 °C datasheet limit) and low switching losses. This work provides a critical process benchmark for the micro/nano-manufacturing of high-density SiC modules.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 7","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300058/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16070824","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon carbide (SiC) half-bridge power modules are widely utilized in new energy power generation, electric vehicles, and industrial power supplies. To address the research gap in collaborative validation between electro-thermal coupling models and process reliability, this paper proposes a closed-loop methodology of "design-simulation-process-validation". This approach integrates in-depth electro-thermal simulation (LTspice XVII/COMSOL Multiphysics 6.3) with micro/nano-packaging processes (sintering/bonding). Firstly, a multifunctional double-pulse test board was designed for the dynamic characterization of SiC devices. LTspice simulations revealed the switching characteristics under an 800 V operating condition. Subsequently, a thermal simulation model was constructed in COMSOL to quantify the module junction temperature gradient (25 °C → 80 °C). Key process parameters affecting reliability were then quantified, including conductive adhesive sintering (S820-F680, 39.3 W/m·K), high-temperature baking at 175 °C, and aluminum wire bonding (15 mil wire diameter and 500 mW ultrasonic power/500 g bonding force). Finally, a double-pulse dynamic test platform was established to capture switching transient characteristics. Experimental results demonstrated the following: (1) The packaged module successfully passed the 800 V high-voltage validation. Measured drain current (4.62 A) exhibited an error of <0.65% compared to the simulated value (4.65 A). (2) The simulated junction temperature (80 °C) was significantly below the safety threshold (175 °C). (3) Microscopic examination using a Leica IVesta 3 microscope (55× magnification) confirmed the absence of voids at the sintering and bonding interfaces. (4) Frequency-dependent dynamic characterization revealed a 6 nH parasitic inductance via Ansys Q3D 2025 R1 simulation, with experimental validation at 8.3 nH through double-pulse testing. Thermal evaluations up to 200 kHz indicated 109 °C peak temperature (below 175 °C datasheet limit) and low switching losses. This work provides a critical process benchmark for the micro/nano-manufacturing of high-density SiC modules.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.