{"title":"MXene-Based Gas Sensors for NH<sub>3</sub> Detection: Recent Developments and Applications.","authors":"Yiyang Xu, Yinglin Wang, Zhaohui Lei, Chen Wang, Xiangli Meng, Pengfei Cheng","doi":"10.3390/mi16070820","DOIUrl":null,"url":null,"abstract":"<p><p>Ammonia, as a toxic and corrosive gas, is widely present in industrial emissions, agricultural activities, and disease biomarkers. Detecting ammonia is of vital importance to environmental safety and human health. Sensors based on MXene have become an effective means for detecting ammonia gas due to their unique hierarchical structure, adjustable surface chemical properties, and excellent electrical conductivity. This study reviews the latest progress in the use of MXene and its composites for the low-temperature detection of ammonia gas. The strategies for designing MXene composites, including heterojunction engineering, surface functionalization, and active sites, are introduced, and their roles in improving sensing performance are clarified. These methods have significantly improved the ability to detect ammonia, offering high selectivity, rapid responses, and ultra-low detection limits within the low-temperature range. Successful applications in fields such as industrial safety, food quality monitoring, medical diagnosis, and agricultural management have demonstrated the multi-functionality of this technology in complex scenarios. The challenges related to the material's oxidation resistance, humidity interference, and cross-sensitivity are also discussed. This study aims to briefly describe the reasonable design based on MXene sensors, aiming to achieve real-time and energy-saving environmental and health monitoring networks in the future.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 7","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12301053/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16070820","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia, as a toxic and corrosive gas, is widely present in industrial emissions, agricultural activities, and disease biomarkers. Detecting ammonia is of vital importance to environmental safety and human health. Sensors based on MXene have become an effective means for detecting ammonia gas due to their unique hierarchical structure, adjustable surface chemical properties, and excellent electrical conductivity. This study reviews the latest progress in the use of MXene and its composites for the low-temperature detection of ammonia gas. The strategies for designing MXene composites, including heterojunction engineering, surface functionalization, and active sites, are introduced, and their roles in improving sensing performance are clarified. These methods have significantly improved the ability to detect ammonia, offering high selectivity, rapid responses, and ultra-low detection limits within the low-temperature range. Successful applications in fields such as industrial safety, food quality monitoring, medical diagnosis, and agricultural management have demonstrated the multi-functionality of this technology in complex scenarios. The challenges related to the material's oxidation resistance, humidity interference, and cross-sensitivity are also discussed. This study aims to briefly describe the reasonable design based on MXene sensors, aiming to achieve real-time and energy-saving environmental and health monitoring networks in the future.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.