Jun-Ge Shi, Zhen-Wu Ma, Zi-Lun Ruan, Ye Xu, Wen-Hao Hang, Rui Liu, Yong Xiong, Hong-Bing Shu, Shu Li
{"title":"ALK2/3 recruitment to the immunological synapse is required for T cell activation and death.","authors":"Jun-Ge Shi, Zhen-Wu Ma, Zi-Lun Ruan, Ye Xu, Wen-Hao Hang, Rui Liu, Yong Xiong, Hong-Bing Shu, Shu Li","doi":"10.1084/jem.20250121","DOIUrl":null,"url":null,"abstract":"<p><p>Antigen recognition by TCR triggers T cell activation and activation-induced cell death (AICD). We identified that the BMP receptors ALK2 and ALK3 were interdependently required for induction of a subset of effector genes and AICD in activated T cells, independent of their BMP ligands. Upon T cell activation, ALK2/3 were recruited to the immunological synapse and phosphorylated by PKC-θ at the conserved T203, resulting in their enhanced kinase activities. The activated ALK2/3, in the absence of BMP, phosphorylated SMAD1/5 at S57, which is reciprocally antagonistic to BMP-induced phosphorylation of SMAD1/5 at S463/465. The S57-phosphorylated SMAD1/5 associated with c-Fos to induce effector genes upon T cell activation. Disruption of Alk2 in T cells attenuated T cell-mediated immunity to Listeria, whereas blocking BMPs enhanced host defense to Listeria in WT but not Alk2-deficient mice. Our findings suggest that the BMP-independent ALK2/3-SMAD1/5 axis plays essential roles in T cell activation and AICD, which is reciprocally antagonistic with BMP-triggered inhibition of T cell-mediated immunity.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 10","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20250121","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antigen recognition by TCR triggers T cell activation and activation-induced cell death (AICD). We identified that the BMP receptors ALK2 and ALK3 were interdependently required for induction of a subset of effector genes and AICD in activated T cells, independent of their BMP ligands. Upon T cell activation, ALK2/3 were recruited to the immunological synapse and phosphorylated by PKC-θ at the conserved T203, resulting in their enhanced kinase activities. The activated ALK2/3, in the absence of BMP, phosphorylated SMAD1/5 at S57, which is reciprocally antagonistic to BMP-induced phosphorylation of SMAD1/5 at S463/465. The S57-phosphorylated SMAD1/5 associated with c-Fos to induce effector genes upon T cell activation. Disruption of Alk2 in T cells attenuated T cell-mediated immunity to Listeria, whereas blocking BMPs enhanced host defense to Listeria in WT but not Alk2-deficient mice. Our findings suggest that the BMP-independent ALK2/3-SMAD1/5 axis plays essential roles in T cell activation and AICD, which is reciprocally antagonistic with BMP-triggered inhibition of T cell-mediated immunity.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.