Whole genome mutagenicity evaluation using Hawk-Seq™ demonstrates high inter-laboratory reproducibility and concordance with the transgenic rodent gene mutation assay.
{"title":"Whole genome mutagenicity evaluation using Hawk-Seq™ demonstrates high inter-laboratory reproducibility and concordance with the transgenic rodent gene mutation assay.","authors":"Shoji Matsumura, Sayaka Hosoi, Takako Hirose, Yuki Otsubo, Kazutoshi Saito, Masaaki Miyazawa, Akihiro Kawade, Atsushi Hakura, Dai Kakiuchi, Shoji Asakura, Naoki Koyama, Yuki Okada, Satsuki Chikura, Takafumi Kimoto, Kenichi Masumura, Takayoshi Suzuki, Kei-Ichi Sugiyama","doi":"10.1186/s41021-025-00336-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Error-corrected next-generation sequencing (ecNGS) enables the sensitive detection of chemically induced mutations. Matsumura et al. reported Hawk-Seq™, an ecNGS method, demonstrating its utility in clarifying mutagenicity both qualitatively and quantitatively. To further promote the adoption of ecNGS-based assays, it is important to evaluate their inter-laboratory transferability and reproducibility. Therefore, we evaluated the inter-laboratory reproducibility of Hawk-Seq™ and its concordance with the transgenic rodent mutation (TGR) assay.</p><p><strong>Results: </strong>The Hawk-Seq™ protocol was successfully transferred from the developer's laboratory (lab A) to two additional laboratories (labs B, C). Whole genomic mutations were analyzed independently using the same genomic DNA samples from the livers of gpt delta mice exposed to benzo[a]pyrene (BP), N-ethyl-N-nitrosourea (ENU), and N-methyl-N-nitrosourea (MNU). In all laboratories, clear dose-dependent increases in base substitution (BS) frequencies were observed, specific to each mutagen (e.g. G:C to T:A for BP). Statistically significant increases in overall mutation frequencies (OMFs) were identified at the same doses across all laboratories, suggesting high reproducibility in mutagenicity assessment. The correlation coefficient (r<sup>2</sup>) of the six types of BS frequencies exceeded 0.97 among the three laboratories for BP- or ENU-exposed samples. Thus, Hawk-Seq™ provides qualitatively and quantitatively reproducible results across laboratories. The OMFs in the Hawk-Seq™ analysis positively correlated (r<sup>2</sup> = 0.64) with gpt mutant frequencies (MFs). The fold induction of OMFs in the Hawk-Seq™ analysis of ENU- and MNU-exposed samples was at least 14.2 and 4.5, respectively, compared to 6.1 and 2.5 for gpt MFs. Meanwhile, the fold induction of OMFs in BP-exposed samples was ≤ 4.6, compared to 8.2 for gpt MFs. These observations suggest that Hawk-Seq™ demonstrates good concordance with the transgenic rodent (TGR) gene mutation assay, whereas the induction of mutation frequency by each mutagen might not directly correspond.</p><p><strong>Conclusions: </strong>Hawk-Seq™-based whole-genome mutagenicity evaluation demonstrated high inter-laboratory reproducibility and concordance with gpt assay results. Our results contribute to the growing evidence that ecNGS assays provide a suitable, or improved, alternative to the TGR assay.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":"47 1","pages":"13"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12305950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Environment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41021-025-00336-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Error-corrected next-generation sequencing (ecNGS) enables the sensitive detection of chemically induced mutations. Matsumura et al. reported Hawk-Seq™, an ecNGS method, demonstrating its utility in clarifying mutagenicity both qualitatively and quantitatively. To further promote the adoption of ecNGS-based assays, it is important to evaluate their inter-laboratory transferability and reproducibility. Therefore, we evaluated the inter-laboratory reproducibility of Hawk-Seq™ and its concordance with the transgenic rodent mutation (TGR) assay.
Results: The Hawk-Seq™ protocol was successfully transferred from the developer's laboratory (lab A) to two additional laboratories (labs B, C). Whole genomic mutations were analyzed independently using the same genomic DNA samples from the livers of gpt delta mice exposed to benzo[a]pyrene (BP), N-ethyl-N-nitrosourea (ENU), and N-methyl-N-nitrosourea (MNU). In all laboratories, clear dose-dependent increases in base substitution (BS) frequencies were observed, specific to each mutagen (e.g. G:C to T:A for BP). Statistically significant increases in overall mutation frequencies (OMFs) were identified at the same doses across all laboratories, suggesting high reproducibility in mutagenicity assessment. The correlation coefficient (r2) of the six types of BS frequencies exceeded 0.97 among the three laboratories for BP- or ENU-exposed samples. Thus, Hawk-Seq™ provides qualitatively and quantitatively reproducible results across laboratories. The OMFs in the Hawk-Seq™ analysis positively correlated (r2 = 0.64) with gpt mutant frequencies (MFs). The fold induction of OMFs in the Hawk-Seq™ analysis of ENU- and MNU-exposed samples was at least 14.2 and 4.5, respectively, compared to 6.1 and 2.5 for gpt MFs. Meanwhile, the fold induction of OMFs in BP-exposed samples was ≤ 4.6, compared to 8.2 for gpt MFs. These observations suggest that Hawk-Seq™ demonstrates good concordance with the transgenic rodent (TGR) gene mutation assay, whereas the induction of mutation frequency by each mutagen might not directly correspond.
Conclusions: Hawk-Seq™-based whole-genome mutagenicity evaluation demonstrated high inter-laboratory reproducibility and concordance with gpt assay results. Our results contribute to the growing evidence that ecNGS assays provide a suitable, or improved, alternative to the TGR assay.
期刊介绍:
Genes and Environment is an open access, peer-reviewed journal that aims to accelerate communications among global scientists working in the field of genes and environment. The journal publishes articles across a broad range of topics including environmental mutagenesis and carcinogenesis, environmental genomics and epigenetics, molecular epidemiology, genetic toxicology and regulatory sciences.
Topics published in the journal include, but are not limited to, mutagenesis and anti-mutagenesis in bacteria; genotoxicity in mammalian somatic cells; genotoxicity in germ cells; replication and repair; DNA damage; metabolic activation and inactivation; water and air pollution; ROS, NO and photoactivation; pharmaceuticals and anticancer agents; radiation; endocrine disrupters; indirect mutagenesis; threshold; new techniques for environmental mutagenesis studies; DNA methylation (enzymatic); structure activity relationship; chemoprevention of cancer; regulatory science. Genetic toxicology including risk evaluation for human health, validation studies on testing methods and subjects of guidelines for regulation of chemicals are also within its scope.