Sevakumaran Vigneswari, Mohammad Amir Huzer Mohammad Idris, Siti Nor Syairah Anis, Seeram Ramakrishna, Abdullah Al-Ashraf Amirul
{"title":"Characterization and <i>in situ</i> Biodegradation Analysis of Brown Kraft Paper Coated with PHA for Potential Sustainable Packaging<sup>§</sup>.","authors":"Sevakumaran Vigneswari, Mohammad Amir Huzer Mohammad Idris, Siti Nor Syairah Anis, Seeram Ramakrishna, Abdullah Al-Ashraf Amirul","doi":"10.17113/ftb.63.02.25.8949","DOIUrl":null,"url":null,"abstract":"<p><strong>Research background: </strong>Biodegradable packaging is gaining immense research interest as conventional non-biodegradable food packaging has led to significant environmental pollution. In response to this, this study aims to develop biodegradable films based on polyhydroxyalkanoate (PHA) as potential food packaging material.</p><p><strong>Experimental approach: </strong>Polyhydroxyalkanoate (PHA) homopolymer, poly(3-hydroxybutyrate) [P(3HB)] and copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], known microbial biodegradable biopolymer plastics, were layered in different mass ratios using the dispersion coating technique over the brown kraft paper as a food packaging material. PHA are known to be safe, non-cytotoxic and non-genotoxic, with a remarkable ability to biodegrade in the environment. The P(3HB) and P(3HB-co-3HV) were synthesised from carbon sources of palm olein and a combination of palm olein with 1-pentanol, respectively, using <i>Cupriavidus malaysiensis</i> USMAA2-4<sub>ABH16</sub>, a transformant bacterial strain with acquired lipase genes.</p><p><strong>Results and conclusions: </strong>Contact angle analysis indicated that brown kraft paper coated with P(3HB-co-3HV) had a higher contact angle than uncoated brown kraft paper and paper coated with P(3HB). The biodegradation analysis of brown kraft paper coated with P(3HB) showed that it degraded 100 % within 9 days compared to all samples of brown kraft paper coated with P(3HB-co-3HV), which were completely degraded by day 12.</p><p><strong>Novelty and scientific contribution: </strong>The results show that brown kraft paper coated with P(3HB-co-3HV) was more hydrophobic than uncoated and P(3HB)-coated brown kraft paper. This study encourages further investigations of brown kraft paper coated with PHA to develop biodegradable food packaging, paving the way for a sustainable alternative to non-biodegradable packaging material.</p>","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":"63 2","pages":"168-176"},"PeriodicalIF":2.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12272172/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Technology and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17113/ftb.63.02.25.8949","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Research background: Biodegradable packaging is gaining immense research interest as conventional non-biodegradable food packaging has led to significant environmental pollution. In response to this, this study aims to develop biodegradable films based on polyhydroxyalkanoate (PHA) as potential food packaging material.
Experimental approach: Polyhydroxyalkanoate (PHA) homopolymer, poly(3-hydroxybutyrate) [P(3HB)] and copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], known microbial biodegradable biopolymer plastics, were layered in different mass ratios using the dispersion coating technique over the brown kraft paper as a food packaging material. PHA are known to be safe, non-cytotoxic and non-genotoxic, with a remarkable ability to biodegrade in the environment. The P(3HB) and P(3HB-co-3HV) were synthesised from carbon sources of palm olein and a combination of palm olein with 1-pentanol, respectively, using Cupriavidus malaysiensis USMAA2-4ABH16, a transformant bacterial strain with acquired lipase genes.
Results and conclusions: Contact angle analysis indicated that brown kraft paper coated with P(3HB-co-3HV) had a higher contact angle than uncoated brown kraft paper and paper coated with P(3HB). The biodegradation analysis of brown kraft paper coated with P(3HB) showed that it degraded 100 % within 9 days compared to all samples of brown kraft paper coated with P(3HB-co-3HV), which were completely degraded by day 12.
Novelty and scientific contribution: The results show that brown kraft paper coated with P(3HB-co-3HV) was more hydrophobic than uncoated and P(3HB)-coated brown kraft paper. This study encourages further investigations of brown kraft paper coated with PHA to develop biodegradable food packaging, paving the way for a sustainable alternative to non-biodegradable packaging material.
期刊介绍:
Food Technology and Biotechnology (FTB) is a diamond open access, peer-reviewed international quarterly scientific journal that publishes papers covering a wide range of topics, including molecular biology, genetic engineering, biochemistry, microbiology, biochemical engineering and biotechnological processing, food science, analysis of food ingredients and final products, food processing and technology, oenology and waste treatment.
The Journal is published by the University of Zagreb, Faculty of Food Technology and Biotechnology, Croatia. It is an official journal of Croatian Society of Biotechnology and Slovenian Microbiological Society, financed by the Croatian Ministry of Science and Education, and supported by the Croatian Academy of Sciences and Arts.